Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 388: 122032, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31955024

ABSTRACT

Antibiotics are widely used in livestock and poultry industries, which results in large quantities of antibiotic residues in manure that influences subsequent treatments. In this study, an Escherichia coli strain was engineered to display erythromycin esterase on its cell surface. The engineered strain (E. coli ereA) efficiently degraded erythromycin by opening the macrocyclic 14-membered lactone ring in solution. Erythromycin (50 mg/L) was completely degraded in a solution by E. coli ereA (1 × 109 CFU/mL) within 24 h. E. coli ereA retained over 86.7 % of the initial enzyme activity after 40 days of storage at 25 °C, and 78.5 % of the initial activity after seven repeated batch reactions in solution at 25 °C. Mice were fed with E. coli ereA and real-time quantitative PCR data showed that E. coli ereA colonized in the mice large intestine. The mice group fed E. coli ereA exhibited 83.13 % decrease in erythromycin levels in their feces compared with the mice group not fed E. coli ereA. E. coli ereA eliminated antibiotics from the source preventing its release into the environment. The surface-engineered strain therefore is an effective alternative agent for treating recalcitrant antibiotics, and has the potential to be applied in livestock and poultry industries.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carboxylic Ester Hydrolases/metabolism , Erythromycin/pharmacology , Escherichia coli/metabolism , Feces/chemistry , Microorganisms, Genetically-Modified/metabolism , Animals , Carboxylic Ester Hydrolases/genetics , Escherichia coli/genetics , Female , Genes, Bacterial , Intestines , Mice
2.
Microorganisms ; 7(10)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547014

ABSTRACT

Microbial electrocatalysis is an electro reaction that uses microorganisms as a biocatalyst, mainly including microbial electrolytic cells (MEC) and microbial fuel cells (MFC), which has been used for wastewater treatment. However, the low processing efficiency is the main drawback for its practical application and the additional energy input of MEC system results in high costs. Recently, MFC/MEC coupled with other treatment processes, especially membrane bioreactors (MBR), has been used for high efficiency and low-cost wastewater treatment. In these systems, the wastewater treatment efficiency can be improved after two units are operated and the membrane fouling of MBR can also be alleviated by the electric energy that was generated in the MFC. In addition, the power output of MFC can also reduce the energy consumption of microbial electrocatalysis systems. This review summarizes the recent studies about microbial electrocatalysis systems coupled with MBR, describing the combination types and microorganism distribution, the advantages and limitations of the systems, and also addresses several suggestions for the future development and practical applications.

3.
Recent Pat Biotechnol ; 13(3): 239-248, 2019.
Article in English | MEDLINE | ID: mdl-30747089

ABSTRACT

BACKGROUND: Hypertension is the chronic medical condition and it affected billions of people worldwide. Natural medicines are the main alternatives to treatment for a majority of people suffering from hypertension. Niazicin-A, Niazimin-A, and Niaziminin-B compounds from Moringa oleifera ethanolic leave extract were reported to have potent antihypertensive activity. OBJECTIVE: These compounds were targeted with Angiotensin-converting enzyme [ACE] which is one of the main regulatory enzymes of the renin-angiotensin system. METHODS: Protein-ligand docking of these compounds with [ACE] [both domain N and C] was conceded out through Autodock vina and visualization was done by chimera. Pharmacokinetics study of these compounds was predicted by ADME-Toxicity Prediction. RESULTS: Niazicin-A, Niazimin-A, and Niaziminin-B showed high binding affinity with ACE and partially blocked the active sites of the enzyme. Niazicin-A, Niazimin-A and Niaziminin-B showed the estimated free binding energy of -7.6kcal/mol kcal/mol, -8.8kcal/mol and -8.0kcal/mol respectively with C-domain of ACE and -7.9kcal/mol, -8.5kcal/mol and -7.7kcal/mol respectively with N-domain of ACE. The compounds showed better binding energy with angiotensinconverting enzyme in comparison to Captopril -5.5kcal/mol and -5.6kcal/mol and Enalapril [standard] -8.4kcal/mol and -7.5kcal/mol with C and N domain, respectively. CONCLUSION: Computationally, the selected bioactive molecules have shown better binding energy to known standard drugs which have been already known for inhibition of ACE and can further act as a pharmacophore for in vitro and in vivo studies in the development of alternative medicine.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Antihypertensive Agents/chemistry , Moringa oleifera/chemistry , Peptidyl-Dipeptidase A/chemistry , Thiocarbamates/chemistry , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Angiotensin-Converting Enzyme Inhibitors/metabolism , Antihypertensive Agents/isolation & purification , Antihypertensive Agents/metabolism , Captopril/chemistry , Captopril/metabolism , Catalytic Domain , Enalapril/chemistry , Enalapril/metabolism , Gene Expression , Humans , Hypertension/drug therapy , Hypertension/enzymology , Kinetics , Molecular Docking Simulation , Patents as Topic , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Plant Extracts/chemistry , Plant Leaves/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Substrate Specificity , Thermodynamics , Thiocarbamates/isolation & purification , Thiocarbamates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...