Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Chemosphere ; 356: 141927, 2024 May.
Article in English | MEDLINE | ID: mdl-38593954

ABSTRACT

Numerous animal studies have demonstrated the toxicity of hexavalent chromium [Cr(VI)] and the bioremediative effects of probiotics on the composition and functions of gut microbiota. Since the precise mechanisms of Cr(VI) detoxification and its interactions with human gut microbiota were unknown, a novel dual-chamber simulated intestinal (DCSI) system was developed to maintain both the stability of the simulated system and the composition of the gut microbiota. Probiotic GR-1 was found to regulate intestinal gut microbiota, thereby reducing the toxicity of Cr(VI) within the DCSI system. The results indicate that Cr(VI) levels were reduced from 2.260 ± 0.2438 µg/g to 1.7086 ± 0.1950 µg/g in the gut microbiota cell pellet, and Cr(VI) permeability decreased from 0.5521 ± 0.1132 µg/L to 0.3681 ± 0.0178 µg/L after 48 h in simulated gut fluid. Additionally, the removal rate of 1,1-Diphenyl-2-picrylhydrazyl (DPPH), reducibility (Vitamin C), and total antioxidant capacity (T-AOC) increased by 50.83%, 31.70%, and 27.56%, respectively, following probiotic treatment. The increase in antioxidant capacity correlated with total Cr removal (P < 0.05, r from -0.80 to 0.73). 16S rRNA sequencing analysis showed that gut microbiota composition was reshaped by the addition of probiotics, which regulated the recovery of the functional gut microbiota to normal levels, rather than restoring the entire gut microbiota composition for community function. Thus, this study not only demonstrates the feasibility and stability of culturing gut microbiota but also offers a new biotechnological approach to synthesizing functional communities with functional strains for environmental risk management.


Subject(s)
Chromium , Gastrointestinal Microbiome , Pediococcus acidilactici , Probiotics , Chromium/toxicity , Chromium/metabolism , Gastrointestinal Microbiome/drug effects , Humans , Biodegradation, Environmental
2.
Article in English | MEDLINE | ID: mdl-38055069

ABSTRACT

Moringa oleifera Lam. is a pan-tropical plant well known to the ancient world for its extensive therapeutic benefits in the Ayurvedic and Unani medical systems. The ancient world was familiar with this tree, but it has only lately been rediscovered as a multifunctional species with a huge range of possible therapeutic applications. It is a folk remedy for skin diseases, edema, sore gums, etc. This review comprises the history, ethnomedicinal applications, botanical characteristics, geographic distribution, propagation, nutritional and phytochemical profile, dermatological effects, and commercially available cosmeceuticals of Moringa oleifera Lam.Compilation of all the presented data has been done by employing various search engines like Science Direct, Google, PubMed, Research Gate, EBSCO, SciVal, SCOPUS, and Google Scholar.Studies on phytochemistry claim the presence of a variety of substances, including fatty acids, phenolic acids, sterols, oxalates, tocopherols, carotenoids, flavonoids, flavonols glycosides, tannins, terpenoids, terpene, saponins, phylates, alkaloids, glucosinolates, glycosides, and isothiocyanate. The pharmacological studies have shown the efficacy of Moringa oleifera Lam. as an antibacterial, antifungal, anti-inflammatory, antioxidant, anti-atopic dermatitis, antipsoriatic, promoter of wound healing, effective in treating herpes simplex virus, photoprotective, and UV protective. As a moisturizer, conditioner, hair growth promoter, cleanser, antiwrinkle, anti-aging, anti-acne, scar removal, pigmentation, and control for skin infection, sores, as well as sweating, it has also been utilized in a range of cosmeceuticals.he Moringa oleifera Lam. due to its broad range of phytochemicals can be proven boon for the treatment of dermatological disorders.

3.
Curr Microbiol ; 80(12): 400, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37930488

ABSTRACT

Water plays a vital role as a natural resource since life is unsustainable without it. If water is polluted or contaminated, it results in several health issues among people. Millions of people are infected with waterborne diseases globally, and India is no exception. In the present review, we have analyzed the outbreaks of waterborne diseases that occurred in several Indian states between 2014 and 2020, identified the key infections, and provided insights into the performance of sanitation improvement programs. We noted that acute diarrheal disease (ADD), typhoid, cholera, hepatitis, and shigellosis are common waterborne diseases in India. These diseases have caused about 11,728 deaths between 2014 and 2018 out of which 10,738 deaths occurred only after 2017. The outbreaks of these diseases have been rising because of a lack of adequate sanitation, poor hygiene, and the absence of proper disposal systems. Despite various efforts by the government such as awareness campaigns, guidance on diet for infected individuals, and sanitation improvement programs, the situation is still grim. Disease hotspots and risk factors must be identified, water, sanitation, and hygiene (WASH) services must be improved, and ongoing policies must be effectively implemented to improve the situation. The efforts must be customized to the local environment. In addition, the possible effects of climate change must be projected, and strategies must be accordingly optimized.


Subject(s)
Waterborne Diseases , Humans , Waterborne Diseases/epidemiology , India/epidemiology , Disease Outbreaks , Risk Factors , Water
4.
Environ Monit Assess ; 195(8): 930, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37432463

ABSTRACT

Water contamination with faecal matter is usually the main cause of microbial waterborne diseases. Such diseases are an alarming situation for small cities in developing countries like India. In this research, to check the microbiological status of drinking water in Solan, Himachal Pradesh (India), water samples were collected from baories/stepwells (n = 14), handpumps (n = 9), and the municipal water distribution system (MWDS) (n = 2) in alternative months of the year (covering three main seasons). In 6 months, 150 samples were collected, and they were all examined for the presence of total coliforms and other bacterial pathogens. The associations between the isolates' ecological and seasonal prevalence were also examined. The coliforms were detected by the Most Probable Number (MPN) method, whose range was noticed from the 2-540/100-ml MPN index. The colony forming unit (CFU) count for different samples at the base log 10 value ranged from 3.03 to 6.19. Different genera isolated and identified were Escherichia coli, Salmonella enteric subsp. enterica, Pseudomonas spp., Klebsiella spp., and Staphylococcus aureus. Overall, 74% of the isolates identified in water samples were from the Enterobacteriaceae family. E. coli was about 42.67% (n = 102), followed by Salmonella enterica subsp. enterica 20.92% (n = 50), Staphylococcus aureus 13.38% (n = 32), Pseudomonas spp. 12.55% (n = 30), and Klebsiella spp. 10.46% (n = 25) amongst the total of 239 isolates. The seasonal impact and the dependency of the occurrence of bacteria on one another were determined to be insignificant in the Spearman correlation test. These results showed that external factors (anthropogenic activities) are mainly responsible for the presence of these bacteria in water resources. The occurrence of bacterial isolates has been noticed in all water samples, irrespective of collecting site or season.


Subject(s)
Drinking Water , Salmonella enterica , Seasons , Cities , Escherichia coli , Environmental Monitoring , India , Klebsiella , Pseudomonas
5.
Microbiome ; 11(1): 98, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147715

ABSTRACT

BACKGROUND: Some insects can degrade both natural and synthetic plastic polymers, their host and gut microbes play crucial roles in this process. However, there is still a scientific gap in understanding how the insect adapted to the polystyrene (PS) diet from natural feed. In this study, we analyzed diet consumption, gut microbiota responses, and metabolic pathways of Tenebrio molitor larvae exposed to PS and corn straw (CS). RESULTS: T. molitor larvae were incubated under controlled conditions (25 ± 1 °C, 75 ± 5% humidity) for 30 days by using PS foam with weight-, number-, and size-average molecular weight (Mw, Mn, and Mz) of 120.0, 73.2, and 150.7 kDa as a diet, respectively. The larvae exhibited lower PS consumption (32.5%) than CS (52.0%), and these diets had no adverse effects on their survival. The gut microbiota structures, metabolic pathways, and enzymatic profiles of PS- and CS-fed larvae showed similar responses. The gut microbiota of larvae analysis indicated Serratia sp., Staphylococcus sp., and Rhodococcus sp. were associated with both PS and CS diets. Metatranscriptomic analysis revealed that xenobiotics, aromatic compounds, and fatty acid degradation pathways were enriched in PS- and CS-fed groups; laccase-like multicopper oxidases, cytochrome P450, monooxygenase, superoxidase, and dehydrogenase were involved in lignin and PS degradation. Furthermore, the upregulated gene lac640 in both PS- and CS-fed groups was overexpressed in E. coli and exhibited PS and lignin degradation ability. CONCLUSIONS: The high similarity of gut microbiomes adapted to biodegradation of PS and CS indicated the plastics-degrading ability of the T. molitor larvae originated through an ancient mechanism that degrades the natural lignocellulose. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Tenebrio , Animals , Polystyrenes/metabolism , Tenebrio/metabolism , Larva , Gastrointestinal Microbiome/physiology , Lignin/metabolism , Zea mays/metabolism , Escherichia coli/metabolism , Plastics/metabolism , Diet
6.
3 Biotech ; 13(6): 211, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37251731

ABSTRACT

Vinca alkaloids including vincristine, vinblastine, vindesine, and vinflunine are chemotherapeutic compounds commonly used to treat various cancers. Vinca alkaloids are one of the first microtubule-targeting agents to be produced and certified for the treatment of hematological and lymphatic neoplasms. Microtubule targeting agents like vincristine and vinblastine work by disrupting microtubule dynamics, causing mitotic arrest and cell death. The key issues facing vinca alkaloids applications include establishing an environment-friendly production technique based on microorganisms, as well as increasing bioavailability without causing harm to patient's health. The low yield of these vinca alkaloids from the plant and the difficulty of meeting their huge colossal demand around the globe prompted researchers to create a variety of approaches. Endophytes could thus be selected to produce beneficial secondary metabolites required for the biosynthesis of vinca alkaloids. This review covers the significant aspects of these vital drugs, from their discovery to the present day, in a concise manner. In addition, we emphasize the major hurdles that must be overcome in the coming years to improve vinca alkaloid's effectiveness.

7.
Crit Rev Food Sci Nutr ; 63(19): 3734-3749, 2023.
Article in English | MEDLINE | ID: mdl-34672234

ABSTRACT

Phytochemicals are important bioactive components present in natural products. Although the health benefits of many food products are well-known and accepted as a common knowledge, the identity of the main bioactive molecules and the mechanism by which they interact in the body of human are often unknown. It was only in the last 30 years when the field of metabolomics had matured that the identification of such molecules with bioactivity has been made possible through the development of instruments to separate and computational techniques to characterize complex samples. This in turn has enabled in vitro studies to quantify the biological activity of the respective phytochemical either in mice models or in humans. In this review, the importance of key dietary phytochemicals such as phenolic acids, flavonoids, carotenoids, resveratrol, curcumin, and capsaicinoids are discussed together with their potential functions for human health. Untargeted metabolomics, in particular, liquid chromatography mass spectrometry, is the most used method to isolate, identify and profile bioactive compounds in the study of phytochemicals in foods. The application of metabolomics in drug discovery is a common practice nowadays and has boosted the drug and/or supplement manufacturing sector. HighlightsPhytochemicals are beneficial compounds for human healthPhytochemicals are plant-based bioactive and obtainable from natural productsUntargeted metabolomics has boosted the discovery of phytochemicals from foodTargeted metabolomics is key in the authentication and screening of phytochemicalsMetabolomics of phytochemicals is reshaping the road to drug and supplement manufacture.


Subject(s)
Metabolomics , Phytochemicals , Humans , Animals , Mice , Metabolomics/methods , Chromatography, Liquid , Resveratrol , Phytochemicals/analysis , Dietary Supplements/analysis
8.
Bioresour Technol ; 369: 128509, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36538960

ABSTRACT

Metronidazole (MNZ) accumulation inhibits municipal wastewater treatment bio-systems, and an effective solution to augment anaerobic activated sludge (AAS) is required. This research discovered that Aspergillus tabacinus LZ-M could degrade 77.39% of MNZ at 5 mg/L. MNZ was metabolized into urea, and the enzymes involved in its degradation were aminotransferase, methyltransferase, monooxygenase, and CN cleavage hydrolase. The strain was immobilized in polyurethane foam and used in AAS for the treatment of MNZ-containing municipal wastewater. The results showed that, using immobilized LZ-M, MNZ was completely removed, and the degradation efficiency of wastewater's chemical oxygen demand (COD) was increased from 11.7% to 83.31%. The extracellular polymer and ROS levels indicated that MNZ's toxicity on AAS was reduced. Furthermore, bioaugmentation stabilized its microbial community, and decreased MNZ resistance genes. These observations confirm that the immobilized fungi are effective in protecting AAS against antibiotic contamination in the treatment process of municipal wastewater.


Subject(s)
Metronidazole , Wastewater , Sewage/microbiology , Cells, Immobilized
10.
Neurol Sci ; 43(4): 2171-2186, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35034236

ABSTRACT

The first case of coronavirus illness was discovered in Wuhan, China, in January 2020 and quickly spread worldwide within the next couple of months. The condition was initially only linked with respiratory disorders. After the evolution of various variants of the SARS-CoV-2, the critical impact of the virus spread to multiple organs and soon, neurological disorder manifestations started to appear in the infected patients. The review is focused on the manifestation of various neurological disorders linked with both the central nervous system and peripheral nervous system. Disorders such as cytokine release syndrome, encephalitis, acute stroke, and Bell's palsy are given specific attention and psychological manifestations are also investigated. For a clear conclusion, cognitive impairment, drug addiction disorders, mood and anxiety disorders, and post-traumatic stress disorder are all fully examined. The association of the SARS-CoV-2 with neurological disorders and pathway is yet to be clear. For better understanding, the explanation of the possible mechanism of viral infection influencing the nervous system is also attempted in the review. While several vaccines and drugs are already involved in treating the SARS-CoV-2 condition, the disease is still considered fatal and more likely to leave permanent neurological damage, which leads to an essential requirement for more research to explore the neurological toll of the COVID-19 disease.


Subject(s)
COVID-19 , Nervous System Diseases , Stroke , Central Nervous System , Humans , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , SARS-CoV-2
12.
Infection ; 50(2): 309-325, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34914036

ABSTRACT

The coronavirus disease-19 has left a permanent mark on the history of the human race. Severe acute respiratory syndrome coronavirus-2 is a positive-sense single-stranded RNA virus, first reported in Wuhan, China, in December 2019 and from there took over the world. Being highly susceptible to mutations, the virus's numerous variants started to appear, and some were more lethal and infectious than the parent. The effectiveness of the vaccine is also affected severely against the new variant. In this study, the infectious mechanism of the coronavirus is explained with a focus on different variants and their respective mutations, which play a critical role in the increased transmissibility, infectivity, and immune escape of the virus. As India has already faced the second wave of the pandemic, the future outlook on the likeliness of a third wave with respect to the Indian variants such as kappa, delta, and Delta Plus is also discussed. This review article aims to reflect the catastrophe of the variants of SARS-CoV-2 and the possibility of developing even more severe variants in the near future.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19 Vaccines , Humans , Mutation , Pandemics , SARS-CoV-2/genetics
13.
3 Biotech ; 11(11): 480, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34790504

ABSTRACT

The demand for novel and renewable sources of energy has increased as a result of rapid population growth, limited sources of bioenergy, and environmental pollution, caused by excessive use of fossil fuels. The need to meet future energy demands have motivated researchers to search for alternative and sustainable sources of energy. The bioconversion of lignocellulosic waste (agricultural and food waste) into biofuels shows competitive promises. Lignocellulosic waste is easily accessible and has a large enzyme system that can be immobilised onto nano-matrices. Consequently, resulting in higher biofuel production and process efficiency. However, the excessive production cost of the current procedures, which involve physical, chemical, and enzymatic reactions, is limited. The use of nanomaterials has recently been shown to concentrate lignocellulosic waste, therefore, reviewing the quest for efficient production of sustainable and cost-effective development of bioenergy from lignocellulosic wastes. This review paper explores the advanced strategies of using nanobiotechnology to combine enzyme-conjugated nanosystems for the cost-effective production of sustainable bioenergy solutions. This research will help to develop an inexpensive, eco-friendly technology for biofuels production and also help overcome the environmental burden of lignocellulosic waste worldwide.

14.
Appl Biochem Biotechnol ; 193(11): 3812-3854, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34347250

ABSTRACT

The polyhydroxyalkanoate was discovered almost around a century ago. Still, all the efforts to replace the traditional non-biodegradable plastic with much more environmentally friendly alternative are not enough. While the petroleum-based plastic is like a parasite, taking over the planet rapidly and without any feasible cure, its perennial presence has made the ocean a floating island of life-threatening debris and has flooded the landfills with toxic towering mountains. It demands for an immediate solution; most resembling answer would be the polyhydroxyalkanoates. The production cost is yet one of the significant challenges that various corporate is facing to replace the petroleum-based plastic. To deal with the economic constrain better strain, better practices, and a better market can be adopted for superior results. It demands for systems for polyhydroxyalkanoate production namely bacteria, yeast, microalgae, and transgenic plants. Solely strains affect more than 40% of overall production cost, playing a significant role in both upstream and downstream processes. The highly modifiable nature of the biopolymer provides the opportunity to replace the petroleum plastic in almost all sectors from food packaging to medical industry. The review will highlight the recent advancements and techno-economic analysis of current commercial models of polyhydroxyalkanoate production. Bio-compatibility and the biodegradability perks to be utilized highly efficient in the medical applications gives ample reason to tilt the scale in the favor of the polyhydroxyalkanoate as the new conventional and sustainable plastic.


Subject(s)
Bacteria/metabolism , Polyhydroxyalkanoates , Biodegradation, Environmental , Polyhydroxyalkanoates/biosynthesis , Polyhydroxyalkanoates/chemistry
15.
3 Biotech ; 11(6): 296, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34136333

ABSTRACT

Algae have gained substantial importance as the most promising potential green fuel source across the globe and is on growing demand due to their antioxidant, anticancer, antiviral, antihypertensive, cholesterol reducing and thickening properties. Therefore, it has vast range of application in medicines, pharmaceutical, cosmetics, paper and nutraceutical industries. In this work, the remarkable ability of algae to convert CO2 and other toxic compounds in atmosphere to potential biofuels, foods, feeds and high-value bioactive compounds is reviewed. Algae produce approximately 50% of the earth's oxygen using its photosynthetic activity, thus acting as a potent tool to mitigate the effects of air pollution. Further, the applicability of algae as a desirable energy source has also been discussed, as they have the potential to serve as an effective alternative to intermittent renewable energy; and also, to combustion-based fossil fuel energy, making them effective for advanced biofuel conversions. This work also evaluates the current applications of algae and the implications of it as a potential substrate for bioplastic, natural alternative to inks and for making paper besides high-value products. In addition, the scope for integrated biorefinery approach is also briefly explored in terms of economic aspects at the industrial scale, as such energy conversion mechanisms are directly linked with sustainability, thus providing a positive overall energy outlook.

16.
Curr Pharm Biotechnol ; 22(15): 2085-2093, 2021.
Article in English | MEDLINE | ID: mdl-33430724

ABSTRACT

AIM: The aim of present investigation is to identify the potential targets for Thymidylate Synthase and Amp-C ß-lactamase from non-alkaloidal fractions of Moringa oleifera leaves. BACKGROUND: Bioactive constituents from medicinal plants, either as pure compounds or as crude forms, provide vast opportunities for new drug discoveries. Due to an increasing demand for chemical diversity in screening programs, seeking therapeutic drugs from natural products, mainly from edible plants, has grown throughout the world. Moringa oleifera has an impressive range of medicinal uses with high nutritional value. Therefore, this medicinal plant has been used widely in traditional Indian medicine for anti-inflammation, anticancer and antibacterial infections. OBJECTIVES: The primary objective is to identify the phytoconstituents present in the maximum proportion in non-alkaloidal fractions of ethanolic leaf extract of Moringa oleifera. Then, the identified phytoconstituents were used to ensure the potential target molecules for binding affinity towards the target proteins viz. Thymidylate Synthase (1HVY) and Amp-C beta-lactamase (1FSY) by docking analysis. METHODS: In present investigation, ethanolic extract of Moringa leaves was prepared and then fractionated on the basis of presence/absence of alkaloids. The antimicrobial activity of different fractions of ethanolic leaf extract was evaluated against various pathogens. Later, after this, bioactive molecules present in the non-alkaloidal fractions of ethanolic leaf extract were accomplished through GC-MS analysis, and finally, the identified phytocompounds were analyzed through docking studies to evaluate their affinity for target proteins viz. Thymidylate Synthase (1HVY) and Amp-C ß-lactamase (1FSY). RESULTS: The antimicrobial activity of non-alkaloidal fractions of ethanolic leaf extract was evaluated against various pathogens which exhibited significant antimicrobial activity. Twenty phytocompounds were identified as gas chromatogram of non-alkaloidal fractions (chloroform and ethyl acetate) of leaf extract of M. oleifera; Four most prominent compounds having highest peak area percentage were identified as Ethane, 1,1,2,2-tetrachloro, (46.45%) 2-Propanone, 1,1,3-trichloro, (13.77%) Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl (17.87%) and 2,4-Dichlorodiphenylsulfone (17.64%). Other notable compounds were 9,12-Octadecadienoic acid (Z,Z) (14.06%), Oleic acid, 3- (octadecyloxy)propyl ester (12.41%), Fluoranthene (6.98%), Phenol, 2,4-bis( 1,1-dimethylethyl) (4.16%) and Phthalic acid, butyl nonyl ester (3.47%). Only, five compounds viz. 2,6-Bis(1,1- dimethylethyl)phenol(C1), Dodecamethylcyclohexasiloxane(C2), Chlorodimethylethylsilane(C3), Fluoranthene(C4) and Hexadecanoic acid, methyl ester(C5) showed the maximum interaction with 1HVY with highest docking score of -178.51Kcal/mol, - 231.65Kcal/mol, -129.18Kcal/mol, - 173.10Kcal/mol and -220.78Kcal/mol, respectively. In addition, three compounds viz. Dodecamethylcyclohexasiloxane( C2), Fluoranthene(C4) and Hexadecanoic acid, methyl ester(C5) showed the maximum interaction with 1FSY with highest docking score of -137.23Kcal/mol, -54.34Kcal/mol and -153.84Kcal/mol, respectively. CONCLUSION: Moringa plant may provide incredible capabilities to develop pharmacological products. The present finding demonstrated that Moringa oleifera is an excellent plant candidate to be used for improving the health of communities.


Subject(s)
Alkaloids , Moringa oleifera , Plant Extracts , Thymidylate Synthase/antagonists & inhibitors , beta-Lactamase Inhibitors/pharmacology , Alkaloids/pharmacology , Moringa oleifera/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , beta-Lactamases
17.
J Ethnopharmacol ; 266: 113434, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33017636

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hippophae rhamnoides L. (family- Elaeagnaceae, common name- Sea buckthorn) is a flowering shrub native to cold temperate regions of Eurasia. Berries, seeds, and leaves of the plant are widely used as a folk medicine for the treatment of hypertension, oedema, inflammation, tissue-regeneration, skin-grafts, burns/injury, wounds, and ulcers. AIM OF THE REVIEW: This article reviews geographical distribution, botanical description, phytochemistry, ethnomedicinal uses, and dermatological activities including, cosmeceuticals of H. rhamnoides available in the market. MATERIALS AND METHODS: The data has been compiled employing the various search engines like Science Direct, Pub Med, Google, Google Scholar, EBSCO, SCOPUS, and SciVal. RESULTS AND DISCUSSION: H. rhamnoides is primarily found in cold-temperate regions of Eurasia and was first located in China. Berries are the most prominent feature of the plant. Phytochemical studies reveal the presence of a wide variety of compounds like flavonoids, carotenoids, polyunsaturated fatty acids, minerals, vitamins, Omega 3, 6, 9 and rarest Omega 7 and about 190 bioactive compounds. The pharmacological studies demonstrated, sea buckthorn to exhibit antibacterial, anti-sebum, antifungal, anti-psoriasis, anti-atopic dermatitis and wound healing activities. Besides, it has also been included in various cosmeceuticals for its use in skin-eventone, smoothening, rejuvenation, removal of wrinkles, scars, and pigmentation, and also in hair related problems. CONCLUSION: Pharmacological evaluation confirmed the ethnomedically claimed biological actions and other beneficial effects on the skin of H. rhamnoides using scientifically accepted protocols and controls, although some of the studies require more elaborative studies. Its full application in the dermatology may be attributed to the presence of a variety of flavonoids, vitamins, and unsaturated fatty acids. Great use of plant in the traditional system for dermatological aspect, demands further comprehensive phytochemical work based on its actual use by the traditional population. Demonstration of the plant in the traditional system, pharmacology, cosmeceuticals not only demands its further therapeutic studies but also warrants focus towards its cultivation and propagation across the globe.


Subject(s)
Dermatologic Agents/pharmacology , Hippophae/chemistry , Plant Preparations/pharmacology , Animals , Dermatologic Agents/isolation & purification , Humans , Medicine, Traditional , Phytochemicals , Plant Preparations/chemistry , Skin Diseases/drug therapy , Skin Diseases/pathology
18.
Biotechnol Bioeng ; 118(1): 210-222, 2021 01.
Article in English | MEDLINE | ID: mdl-32915455

ABSTRACT

Copper pollution poses a serious threat to the aquatic environment; however, in situ analytical methods for copper monitoring are still scarce. In the current study, Escherichia coli Rosetta was genetically modified to express OprF and ribB with promoter Pt7 and PcusC , respectively, which could synthesize porin and senses Cu2+ to produce riboflavin. The cell membrane permeability of this engineered strain was increased and its riboflavin production (1.45-3.56 µM) was positively correlated to Cu2+ (0-0.5 mM). The biosynthetic strain was then employed in microbial fuel cell (MFC) based biosensor. Under optimal operating parameters of pH 7.1 and 37°C, the maximum voltage (248, 295, 333, 352, and 407 mV) of the constructed MFC biosensor showed a linear correlation with Cu2+ concentration (0.1, 0.2, 0.3, 0.4, 0.5 mM, respectively; R2 = 0.977). The continuous mode testing demonstrated that the MFC biosensor specifically senses Cu2+ with calculated detection limit of 28 µM, which conforms to the common Cu2+ safety standard (32 µM). The results obtained with the developed biosensor system were consistent with the existing analytical methods such as colorimetry, flame atomic absorption spectrometry, and inductively coupled plasma optical emission spectrometry. In conclusion, this MFC-based biosensor overcomes the signal conversion and transmission problems of conventional approaches, providing a fast and economic analytical alternative for in situ monitoring of Cu2+ in water.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Copper/analysis , Escherichia coli , Microorganisms, Genetically-Modified , Riboflavin/biosynthesis , Copper/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Riboflavin/genetics
19.
Med Hypotheses ; 146: 110371, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33223324

ABSTRACT

The universal phenomenon of blood clotting is well known to be protective in external cellular/ tissue injury. However, the emergence of unusual thrombotic presentations in COVID-19 patients is the real concern. Interaction of the spike glycoprotein with ACE2 receptor present in the host cell surface mediates the entry of SARS-CoV-2 causing COVID-19 infection. New clinical findings of SARS-CoV-2 pathogenesis are coming out every day, and one such mystery is the formation of mysterious blood clots in the various tissues and organs of COVID-19 patients, which needs critical attention. To address this issue, we hypothesis that, high ACE2 expression in the endothelium of blood vessels facilitates the high-affinity binding of SARS-CoV-2 using spike protein, causing infection and internal injury inside the vascular wall of blood vessels. This viral associated injury may directly/indirectly initiate activation of coagulation and clotting cascades forming internal blood clots. However, the presence of these clots is undesirable as they are responsible for thrombosis and need to be treated with anti-thrombotic intervention.


Subject(s)
COVID-19/complications , Models, Cardiovascular , Pandemics , SARS-CoV-2 , Thrombosis/etiology , Angiotensin-Converting Enzyme 2/physiology , Blood Coagulation/physiology , COVID-19/physiopathology , COVID-19/virology , Endothelium, Vascular/injuries , Endothelium, Vascular/physiopathology , Endothelium, Vascular/virology , Host Microbial Interactions/physiology , Humans , Receptors, Virus/physiology , Spike Glycoprotein, Coronavirus/physiology , Thrombosis/physiopathology , Thrombosis/virology
20.
Plants (Basel) ; 10(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374419

ABSTRACT

Treatment of wounds is essential as the wound can also be lethal at some point in time if not healed properly. Ethnomedicinal plants can treat wounds as they have no side effects, whereas, in the case of chemical drugs, the side effects are on the rise. In this study, seeds of Moringa oleifera which is the essential ethnomedicinal plant, were studied for wound healing efficacy. The study was planned for the assessment of in vitro (antioxidant and antimicrobial activities) and in vivo (excision and incision wound healing models) wound healing efficacy of n-hexane extract and hydrogels of Moringa oleifera seeds. The antioxidant and antimicrobial activities were assessed by DPPH free radical scavenging assay and Agar well diffusion method, respectively. In excision and incision wound models, Swiss albino mice were used for wound healing efficacy of hydrogels, i.e., 5% and 10% hexane extracts of Moringa oleifera seeds. The n-hexane extract showed antioxidant as well as antibacterial activities. Moreover, the hydrogels formulated using n-hexane extract of Moringa oleifera seeds showed significant wound healing activity compared to both control and standard until the end of the protocol in both the models. Furthermore, the histopathological investigation confirmed the findings of accelerated regeneration of tissue accompanied by a decrease in inflammatory cells and increased vascularity of the immediate skin. The results (both in vitro and in vivo) claimed conclusively that our n-hexane hydrogel formulation of Moringa oleifera seeds might serve as an alternative therapy in skin restoration during wound healing.

SELECTION OF CITATIONS
SEARCH DETAIL
...