Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Cogn Neurosci ; : 1-23, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38940741

ABSTRACT

Motion information has been argued to be central to the subjective segmentation of observed actions. Concerning object-directed actions, object-associated action information might as well inform efficient action segmentation and prediction. The present study compared the segmentation and neural processing of object manipulations and equivalent dough ball manipulations to elucidate the effect of object-action associations. Behavioral data corroborated that objective relational changes in the form of (un-)touchings of objects, hand, and ground represent meaningful anchor points in subjective action segmentation rendering them objective marks of meaningful event boundaries. As expected, segmentation behavior became even more systematic for the weakly informative dough. fMRI data were modeled by critical subjective, and computer-vision-derived objective event boundaries. Whole-brain as well as planned ROI analyses showed that object information had significant effects on how the brain processes these boundaries. This was especially pronounced at untouchings, that is, events that announced the beginning of the upcoming action and might be the point where competing predictions are aligned with perceptual input to update the current action model. As expected, weak object-action associations at untouching events were accompanied by increased biological motion processing, whereas strong object-action associations came with an increased contextual associative information processing, as indicated by increased parahippocampal activity. Interestingly, anterior inferior parietal lobule activity increased for weak object-action associations at untouching events, presumably because of an unrestricted number of candidate actions for dough manipulation. Our findings offer new insights into the significance of objects for the segmentation of action.

2.
Article in English | MEDLINE | ID: mdl-37934638

ABSTRACT

Finding optimal paths in connected graphs requires determining the smallest total cost for traveling along the graph's edges. This problem can be solved by several classical algorithms, where, usually, costs are predefined for all edges. Conventional planning methods can, thus, normally not be used when wanting to change costs in an adaptive way following the requirements of some task. Here, we show that one can define a neural network representation of path-finding problems by transforming cost values into synaptic weights, which allows for online weight adaptation using network learning mechanisms. When starting with an initial activity value of one, activity propagation in this network will lead to solutions, which are identical to those found by the Bellman-Ford (BF) algorithm. The neural network has the same algorithmic complexity as BF, and, in addition, we can show that network learning mechanisms (such as Hebbian learning) can adapt the weights in the network augmenting the resulting paths according to some task at hand. We demonstrate this by learning to navigate in an environment with obstacles as well as by learning to follow certain sequences of path nodes. Hence, the here-presented novel algorithm may open up a different regime of applications where path augmentation (by learning) is directly coupled with path finding in a natural way.

3.
Front Neurorobot ; 17: 1218977, 2023.
Article in English | MEDLINE | ID: mdl-37692886

ABSTRACT

Traditional AI-planning methods for task planning in robotics require a symbolically encoded domain description. While powerful in well-defined scenarios, as well as human-interpretable, setting this up requires a substantial effort. Different from this, most everyday planning tasks are solved by humans intuitively, using mental imagery of the different planning steps. Here, we suggest that the same approach can be used for robots too, in cases which require only limited execution accuracy. In the current study, we propose a novel sub-symbolic method called Simulated Mental Imagery for Planning (SiMIP), which consists of perception, simulated action, success checking, and re-planning performed on 'imagined' images. We show that it is possible to implement mental imagery-based planning in an algorithmically sound way by combining regular convolutional neural networks and generative adversarial networks. With this method, the robot acquires the capability to use the initially existing scene to generate action plans without symbolic domain descriptions, while at the same time, plans remain human-interpretable, different from deep reinforcement learning, which is an alternative sub-symbolic approach. We create a data set from real scenes for a packing problem of having to correctly place different objects into different target slots. This way efficiency and success rate of this algorithm could be quantified.

4.
Commun Med (Lond) ; 3(1): 112, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587165

ABSTRACT

BACKGROUND: Aiming at objective early detection of neuromotor disorders such as cerebral palsy, we propose an innovative non-intrusive approach using a pressure sensing device to classify infant general movements. Here we differentiate typical general movement patterns of the "fidgety period" (fidgety movements) vs. the "pre-fidgety period" (writhing movements). METHODS: Participants (N = 45) were sampled from a typically-developing infant cohort. Multi-modal sensor data, including pressure data from a pressure sensing mat with 1024 sensors, were prospectively recorded for each infant in seven succeeding laboratory sessions in biweekly intervals from 4 to 16 weeks of post-term age. 1776 pressure data snippets, each 5 s long, from the two targeted age periods were taken for movement classification. Each snippet was pre-annotated based on corresponding synchronised video data by human assessors as either fidgety present or absent. Multiple neural network architectures were tested to distinguish the fidgety present vs. fidgety absent classes, including support vector machines, feed-forward networks, convolutional neural networks, and long short-term memory networks. RESULTS: Here we show that the convolution neural network achieved the highest average classification accuracy (81.4%). By comparing the pros and cons of other methods aiming at automated general movement assessment to the pressure sensing approach, we infer that the proposed approach has a high potential for clinical applications. CONCLUSIONS: We conclude that the pressure sensing approach has great potential for efficient large-scale motion data acquisition and sharing. This will in return enable improvement of the approach that may prove scalable for daily clinical application for evaluating infant neuromotor functions.


The movement of a baby is used by health care professionals to determine whether they are developing as expected. The aim of this study was to investigate whether a pad containing sensors that measured pressure occurring as the babies moved could enable identification of different movements of the babies. The results we obtained were similar to those obtained from use of a computer to process videos of the moving babies or other methods using movement sensors. This method could be more readily used to check the movement development of babies than other methods that are currently used.

5.
iScience ; 26(4): 106348, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36994082

ABSTRACT

In behavioral research and clinical practice video data has rarely been shared or pooled across sites due to ethical concerns of confidentiality, although the need of shared large-scaled datasets remains increasing. This demand is even more imperative when data-heavy computer-based approaches are involved. To share data while abiding by privacy protection rules, a critical question arises whether efforts at data de-identification reduce data utility? We addressed this question by showcasing an established and video-based diagnostic tool for detecting neurological deficits. We demonstrated for the first time that, for analyzing infant neuromotor functions, pseudonymization by face-blurring video recordings is a viable approach. The redaction did not affect classification accuracy for either human assessors or artificial intelligence methods, suggesting an adequate and easy-to-apply solution for sharing behavioral video data. Our work shall encourage more innovative solutions to share and merge stand-alone video datasets into large data pools to advance science and public health.

6.
J Child Psychol Psychiatry ; 64(1): 16-26, 2023 01.
Article in English | MEDLINE | ID: mdl-35775235

ABSTRACT

BACKGROUND: Diagnostic assessment of ASD requires substantial clinical experience and is particularly difficult in the context of other disorders with behavioral symptoms in the domain of social interaction and communication. Observation measures such as the Autism Diagnostic Observation Schedule (ADOS) do not take into account such co-occurring disorders. METHOD: We used a well-characterized clinical sample of individuals (n = 1,251) that had received detailed outpatient evaluation for the presence of an ASD diagnosis (n = 481) and covered a range of additional overlapping diagnoses, including anxiety-related disorders (ANX, n = 122), ADHD (n = 439), and conduct disorder (CD, n = 194). We focused on ADOS module 3, covering the age range with particular high prevalence of such differential diagnoses. We used machine learning (ML) and trained random forest models on ADOS single item scores to predict a clinical best-estimate diagnosis of ASD in the context of these differential diagnoses (ASD vs. ANX, ASD vs. ADHD, ASD vs. CD), in the context of co-occurring ADHD, and an unspecific model using all available data. We employed nested cross-validation for an unbiased estimate of classification performance and made available a Webapp to showcase the results and feasibility for translation into clinical practice. RESULTS: We obtained very good overall sensitivity (0.89-0.94) and specificity (0.87-0.89). In particular for individuals with less severe symptoms, our models showed increases of up to 35% in sensitivity or specificity. Furthermore, we analyzed item importance profiles of the ANX, ADHD, and CD models in comparison with the unspecific model revealing distinct patterns of importance for specific ADOS items with respect to differential diagnoses. CONCLUSIONS: ML-based diagnostic classification may improve clinical decisions by utilizing the full range of information from detailed diagnostic observation instruments such as the ADOS. Importantly, this strategy might be of particular relevance for older children with less severe symptoms for whom the diagnostic decision is often particularly difficult.


Subject(s)
Autism Spectrum Disorder , Child , Humans , Adolescent , Autism Spectrum Disorder/diagnosis , Machine Learning , Communication
7.
Adv Neurodev Disord ; 6(4): 369-388, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36540761

ABSTRACT

Objectives: Research on typically developing (TD) children and those with neurodevelopmental disorders and genetic syndromes was targeted. Specifically, studies on autism spectrum disorder, Down syndrome, Rett syndrome, fragile X syndrome, cerebral palsy, Angelman syndrome, tuberous sclerosis complex, Williams-Beuren syndrome, Cri-du-chat syndrome, Prader-Willi syndrome, and West syndrome were searched. The objectives are to review observational and computational studies on the emergence of (pre-)babbling vocalisations and outline findings on acoustic characteristics of early verbal functions. Methods: A comprehensive review of the literature was performed including observational and computational studies focusing on spontaneous infant vocalisations at the pre-babbling age of TD children, individuals with genetic or neurodevelopmental disorders. Results: While there is substantial knowledge about early vocal development in TD infants, the pre-babbling phase in infants with neurodevelopmental and genetic syndromes is scarcely scrutinised. Related approaches, paradigms, and definitions vary substantially and insights into the onset and characteristics of early verbal functions in most above-mentioned disorders are missing. Most studies focused on acoustic low-level descriptors (e.g. fundamental frequency) which bore limited clinical relevance. This calls for computational approaches to analyse features of infant typical and atypical verbal development. Conclusions: Pre-babbling vocalisations as precursor for future speech-language functions may reveal valuable signs for identifying infants at risk for atypical development. Observational studies should be complemented by computational approaches to enable in-depth understanding of the developing speech-language functions. By disentangling features of typical and atypical early verbal development, computational approaches may support clinical screening and evaluation.

8.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7877-7887, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34170833

ABSTRACT

Trajectory or path planning is a fundamental issue in a wide variety of applications. In this article, we show that it is possible to solve path planning on a maze for multiple start point and endpoint highly efficiently with a novel configuration of multilayer networks that use only weighted pooling operations, for which no network training is needed. These networks create solutions, which are identical to those from classical algorithms such as breadth-first search (BFS), Dijkstra's algorithm, or TD(0). Different from competing approaches, very large mazes containing almost one billion nodes with dense obstacle configuration and several thousand importance-weighted path endpoints can this way be solved quickly in a single pass on parallel hardware.

9.
Neuroimage ; 243: 118534, 2021 11.
Article in English | MEDLINE | ID: mdl-34469813

ABSTRACT

Recognizing the actions of others depends on segmentation into meaningful events. After decades of research in this area, it remains still unclear how humans do this and which brain areas support underlying processes. Here we show that a computer vision-based model of touching and untouching events can predict human behavior in segmenting object manipulation actions with high accuracy. Using this computational model and functional Magnetic Resonance Imaging (fMRI), we pinpoint the neural networks underlying this segmentation behavior during an implicit action observation task. Segmentation was announced by a strong increase of visual activity at touching events followed by the engagement of frontal, hippocampal and insula regions, signaling updating expectation at subsequent untouching events. Brain activity and behavior show that touching-untouching motifs are critical features for identifying the key elements of actions including object manipulations.


Subject(s)
Brain Mapping/methods , Brain/physiology , Touch/physiology , Adolescent , Adult , Computer Simulation , Female , Humans , Magnetic Resonance Imaging , Male , Motion Perception/physiology , Movement/physiology , Neural Networks, Computer , Recognition, Psychology , Young Adult
10.
Sci Rep ; 11(1): 9888, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972661

ABSTRACT

The past decade has evinced a boom of computer-based approaches to aid movement assessment in early infancy. Increasing interests have been dedicated to develop AI driven approaches to complement the classic Prechtl general movements assessment (GMA). This study proposes a novel machine learning algorithm to detect an age-specific movement pattern, the fidgety movements (FMs), in a prospectively collected sample of typically developing infants. Participants were recorded using a passive, single camera RGB video stream. The dataset of 2800 five-second snippets was annotated by two well-trained and experienced GMA assessors, with excellent inter- and intra-rater reliabilities. Using OpenPose, the infant full pose was recovered from the video stream in the form of a 25-points skeleton. This skeleton was used as input vector for a shallow multilayer neural network (SMNN). An ablation study was performed to justify the network's architecture and hyperparameters. We show for the first time that the SMNN is sufficient to discriminate fidgety from non-fidgety movements in a sample of age-specific typical movements with a classification accuracy of 88%. The computer-based solutions will complement original GMA to consistently perform accurate and efficient screening and diagnosis that may become universally accessible in daily clinical practice in the future.


Subject(s)
Cerebral Palsy/diagnosis , Image Interpretation, Computer-Assisted/methods , Machine Learning , Movement/physiology , Cerebral Palsy/physiopathology , Child Development/physiology , Datasets as Topic , Female , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male , Mass Screening/methods , Pilot Projects , Prospective Studies , Video Recording
11.
Res Dev Disabil ; 110: 103854, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33571849

ABSTRACT

BACKGROUND: The clinical and scientific value of Prechtl general movement assessment (GMA) has been increasingly recognised, which has extended beyond the detection of cerebral palsy throughout the years. With advancing computer science, a surging interest in developing automated GMA emerges. AIMS: In this scoping review, we focused on video-based approaches, since it remains authentic to the non-intrusive principle of the classic GMA. Specifically, we aimed to provide an overview of recent video-based approaches targeting GMs; identify their techniques for movement detection and classification; examine if the technological solutions conform to the fundamental concepts of GMA; and discuss the challenges of developing automated GMA. METHODS AND PROCEDURES: We performed a systematic search for computer vision-based studies on GMs. OUTCOMES AND RESULTS: We identified 40 peer-reviewed articles, most (n = 30) were published between 2017 and 2020. A wide variety of sensing, tracking, detection, and classification tools for computer vision-based GMA were found. Only a small portion of these studies applied deep learning approaches. A comprehensive comparison between data acquisition and sensing setups across the reviewed studies, highlighting limitations and advantages of each modality in performing automated GMA is provided. CONCLUSIONS AND IMPLICATIONS: A "method-of-choice" for automated GMA does not exist. Besides creating large datasets, understanding the fundamental concepts and prerequisites of GMA is necessary for developing automated solutions. Future research shall look beyond the narrow field of detecting cerebral palsy and open up to the full potential of applying GMA to enable an even broader application.


Subject(s)
Cerebral Palsy , Movement , Cerebral Palsy/diagnosis , Computers , Humans , Machine Learning , Neurologic Examination
12.
IEEE Trans Neural Netw Learn Syst ; 32(9): 4013-4025, 2021 09.
Article in English | MEDLINE | ID: mdl-32833657

ABSTRACT

In this article, we present a generic locomotion control framework for legged robots and a strategy for control policy optimization. The framework is based on neural control and black-box optimization. The neural control combines a central pattern generator (CPG) and a radial basis function (RBF) network to create a CPG-RBF network. The control network acts as a neural basis to produce arbitrary rhythmic trajectories for the joints of robots. The main features of the CPG-RBF network are: 1) it is generic since it can be applied to legged robots with different morphologies; 2) it has few control parameters, resulting in fast learning; 3) it is scalable, both in terms of policy/trajectory complexity and the number of legs that can be controlled using similar trajectories; 4) it does not rely heavily on sensory feedback to generate locomotion and is thus less prone to sensory faults; and 5) once trained, it is simple, minimal, and intuitive to use and analyze. These features will lead to an easy-to-use framework with fast convergence and the ability to encode complex locomotion control policies. In this work, we show that the framework can successfully be applied to three different simulated legged robots with varying morphologies and, even broken joints, to learn locomotion control policies. We also show that after learning, the control policies can also be successfully transferred to a real-world robot without any modifications. We, furthermore, show the scalability of the framework by implementing it as a central controller for all legs of a robot and as a decentralized controller for individual legs and leg pairs. By investigating the correlation between robot morphology and encoding type, we are able to present a strategy for control policy optimization. Finally, we show how sensory feedback can be integrated into the CPG-RBF network to enable online adaptation.

13.
Front Neurorobot ; 14: 600984, 2020.
Article in English | MEDLINE | ID: mdl-33584239

ABSTRACT

Path planning plays a crucial role in many applications in robotics for example for planning an arm movement or for navigation. Most of the existing approaches to solve this problem are iterative, where a path is generated by prediction of the next state from the current state. Moreover, in case of multi-agent systems, paths are usually planned for each agent separately (decentralized approach). In case of centralized approaches, paths are computed for each agent simultaneously by solving a complex optimization problem, which does not scale well when the number of agents increases. In contrast to this, we propose a novel method, using a homogeneous, convolutional neural network, which allows generation of complete paths, even for more than one agent, in one-shot, i.e., with a single prediction step. First we consider single path planning in 2D and 3D mazes. Here, we show that our method is able to successfully generate optimal or close to optimal (in most of the cases <10% longer) paths in more than 99.5% of the cases. Next we analyze multi-paths either from a single source to multiple end-points or vice versa. Although the model has never been trained on multiple paths, it is also able to generate optimal or near-optimal (<22% longer) paths in 96.4 and 83.9% of the cases when generating two and three paths, respectively. Performance is then also compared to several state of the art algorithms.

14.
PLoS One ; 11(8): e0161679, 2016.
Article in English | MEDLINE | ID: mdl-27560350

ABSTRACT

The adaptive mechanisms of homo- and heterosynaptic plasticity play an important role in learning and memory. In order to maintain plasticity-induced changes for longer time scales (up to several days), they have to be consolidated by transferring them from a short-lasting early-phase to a long-lasting late-phase state. The underlying processes of this synaptic consolidation are already well-known for homosynaptic plasticity, however, it is not clear whether the same processes also enable the induction and consolidation of heterosynaptic plasticity. In this study, by extending a generic calcium-based plasticity model with the processes of synaptic consolidation, we show in simulations that indeed heterosynaptic plasticity can be induced and, furthermore, consolidated by the same underlying processes as for homosynaptic plasticity. Furthermore, we show that by local diffusion processes the heterosynaptic effect can be restricted to a few synapses neighboring the homosynaptically changed ones. Taken together, this generic model reproduces many experimental results of synaptic tagging and consolidation, provides several predictions for heterosynaptic induction and consolidation, and yields insights into the complex interactions between homo- and heterosynaptic plasticity over a broad variety of time (minutes to days) and spatial scales (several micrometers).


Subject(s)
Calcium/pharmacology , Long-Term Potentiation , Neuronal Plasticity , Synapses/drug effects , Animals , Computer Simulation , Electric Stimulation , Hippocampus/physiology , Humans , Memory , Models, Neurological , Models, Statistical , Neurons/physiology , Poisson Distribution
15.
Sci Rep ; 5: 12866, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26249242

ABSTRACT

When learning a complex task our nervous system self-organizes large groups of neurons into coherent dynamic activity patterns. During this, a network with multiple, simultaneously active, and computationally powerful cell assemblies is created. How such ordered structures are formed while preserving a rich diversity of neural dynamics needed for computation is still unknown. Here we show that the combination of synaptic plasticity with the slower process of synaptic scaling achieves (i) the formation of cell assemblies and (ii) enhances the diversity of neural dynamics facilitating the learning of complex calculations. Due to synaptic scaling the dynamics of different cell assemblies do not interfere with each other. As a consequence, this type of self-organization allows executing a difficult, six degrees of freedom, manipulation task with a robot where assemblies need to learn computing complex non-linear transforms and - for execution - must cooperate with each other without interference. This mechanism, thus, permits the self-organization of computationally powerful sub-structures in dynamic networks for behavior control.


Subject(s)
Learning/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Synapses/physiology , Synaptic Transmission/physiology , Action Potentials/physiology , Algorithms , Humans , Models, Neurological , Neural Networks, Computer
16.
Biol Cybern ; 103(4): 255-71, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20556620

ABSTRACT

Understanding closed loop behavioral systems is a non-trivial problem, especially when they change during learning. Descriptions of closed loop systems in terms of information theory date back to the 1950s, however, there have been only a few attempts which take into account learning, mostly measuring information of inputs. In this study we analyze a specific type of closed loop system by looking at the input as well as the output space. For this, we investigate simulated agents that perform differential Hebbian learning (STDP). In the first part we show that analytical solutions can be found for the temporal development of such systems for relatively simple cases. In the second part of this study we try to answer the following question: How can we predict which system from a given class would be the best for a particular scenario? This question is addressed using energy, input/output ratio and entropy measures and investigating their development during learning. This way we can show that within well-specified scenarios there are indeed agents which are optimal with respect to their structure and adaptive properties.


Subject(s)
Behavior/physiology , Learning/physiology , Neural Networks, Computer , Algorithms , Computer Simulation , Entropy , Humans , Robotics , Time Factors
17.
J Comput Neurosci ; 25(3): 562-82, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18446432

ABSTRACT

A large body of experimental evidence suggests that the hippocampal place field system is involved in reward based navigation learning in rodents. Reinforcement learning (RL) mechanisms have been used to model this, associating the state space in an RL-algorithm to the place-field map in a rat. The convergence properties of RL-algorithms are affected by the exploration patterns of the learner. Therefore, we first analyzed the path characteristics of freely exploring rats in a test arena. We found that straight path segments with mean length 23 cm up to a maximal length of 80 cm take up a significant proportion of the total paths. Thus, rat paths are biased as compared to random exploration. Next we designed a RL system that reproduces these specific path characteristics. Our model arena is covered by overlapping, probabilistically firing place fields (PF) of realistic size and coverage. Because convergence of RL-algorithms is also influenced by the state space characteristics, different PF-sizes and densities, leading to a different degree of overlap, were also investigated. The model rat learns finding a reward opposite to its starting point. We observed that the combination of biased straight exploration, overlapping coverage and probabilistic firing will strongly impair the convergence of learning. When the degree of randomness in the exploration is increased, convergence improves, but the distribution of straight path segments becomes unrealistic and paths become 'wiggly'. To mend this situation without affecting the path characteristic two additional mechanisms are implemented: a gradual drop of the learned weights (weight decay) and path length limitation, which prevents learning if the reward is not found after some expected time. Both mechanisms limit the memory of the system and thereby counteract effects of getting trapped on a wrong path. When using these strategies individually divergent cases get substantially reduced and for some parameter settings no divergence was found anymore at all. Using weight decay and path length limitation at the same time, convergence is not much improved but instead time to convergence increases as the memory limiting effect is getting too strong. The degree of improvement relies also on the size and degree of overlap (coverage density) in the place field system. The used combination of these two parameters leads to a trade-off between convergence and speed to convergence. Thus, this study suggests that the role of the PF-system in navigation learning cannot be considered independently from the animals' exploration pattern.


Subject(s)
Computer Simulation , Learning/physiology , Models, Biological , Space Perception/physiology , Spatial Behavior/physiology , Algorithms , Animals , Behavior, Animal/physiology , Environment , Male , Models, Statistical , Motor Activity/physiology , Neurons/cytology , Neurons/physiology , Rats
18.
J Comput Neurosci ; 25(3): 481-500, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18431616

ABSTRACT

Experiments with rodents demonstrate that visual cues play an important role in the control of hippocampal place cells and spatial navigation. Nevertheless, rats may also rely on auditory, olfactory and somatosensory stimuli for orientation. It is also known that rats can track odors or self-generated scent marks to find a food source. Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. We emphasize the importance of olfactory cues in place cell formation and show that the utility of environmental and self-generated olfactory cues, together with a mixed navigation strategy, improves goal directed navigation.


Subject(s)
Models, Neurological , Odorants , Sensory Receptor Cells/physiology , Space Perception/physiology , Spatial Behavior/physiology , Animals , Behavior, Animal/physiology , Discrimination Learning/physiology , Discrimination, Psychological , Environment , Goals , Neural Networks, Computer , Photic Stimulation/methods , Rats , Sensory Receptor Cells/cytology
19.
Biol Cybern ; 97(5-6): 363-78, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17912544

ABSTRACT

OBJECTIVE: Living creatures can learn or improve their behaviour by temporally correlating sensor cues where near-senses (e.g., touch, taste) follow after far-senses (vision, smell). Such type of learning is related to classical and/or operant conditioning. Algorithmically all these approaches are very simple and consist of single learning unit. The current study is trying to solve this problem focusing on chained learning architectures in a simple closed-loop behavioural context. METHODS: We applied temporal sequence learning (Porr B and Wörgötter F 2006) in a closed-loop behavioural system where a driving robot learns to follow a line. Here for the first time we introduced two types of chained learning architectures named linear chain and honeycomb chain. We analyzed such architectures in an open and closed-loop context and compared them to the simple learning unit. CONCLUSIONS: By implementing two types of simple chained learning architectures we have demonstrated that stable behaviour can also be obtained in such architectures. Results also suggest that chained architectures can be employed and better behavioural performance can be obtained compared to simple architectures in cases where we have sparse inputs in time and learning normally fails because of weak correlations.


Subject(s)
Artificial Intelligence , Learning/physiology , Models, Biological , Pattern Recognition, Automated , Animals , Behavior/physiology , Computer Simulation , Humans , Neural Networks, Computer , Robotics/methods
20.
PLoS Comput Biol ; 3(7): e134, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17630828

ABSTRACT

Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori-motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Robotics/methods , Walking , Biomechanical Phenomena , Bionics/methods , Feedback , Gait , Humans , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Postural Balance , Reflex , Robotics/instrumentation , Synaptic Transmission , Walking/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...