Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 45(6): 2667-2671, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29659060

ABSTRACT

PURPOSE: An optimized air ventilation system design for a treatment room in Heavy-ion Medical Facility is an important issue in the aspects of nuclear safety because the activated air produced in a treatment room can directly affect the medical staff and the general public in the radiation-free area. METHODS: Optimized design criteria of air ventilation system for a clinical room in 430 MeV/u carbon ion beam medical accelerator facility was performed by using a combination of MCNPX2.7.0 and CINDER'90 codes. Effective dose rate and its accumulated effective dose by inhalation and residual gamma were calculated for a normal treatment scenario (2 min irradiation for one fraction) as a function of decay time. Natural doses around the site were measured before construction and used as reference data. RESULTS: With no air ventilation system, the maximum effective dose rate was about 3 µSv/h (total dose of 90 mSv/y) and minimum 0.2 µSv/h (total dose of 6 mSv/y), which are over the legal limits for medical staff and for the general public. Although inhalation dose contribution was relatively small, it was considered seriously because of its long-lasting effects in the body. The integrated dose per year was 1.8 mSv/y in the radiation-free area with the 20-min rate of air ventilation system. CONCLUSION: An optimal air ventilation rate of 20 min is proposed for a clinical room, which also agrees with the best mechanical design value.


Subject(s)
Facility Design and Construction , Heavy Ion Radiotherapy , Ventilation/instrumentation , Ventilation/methods , Air , Carbon/therapeutic use , Equipment Design , Gamma Rays/therapeutic use , Humans , Models, Theoretical , Radiation Dosage , Radiation Exposure/prevention & control , Radiation Protection/instrumentation , Radiation Protection/methods
2.
Med Phys ; 42(10): 6021-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26429277

ABSTRACT

PURPOSE: In proton therapy, collisions between the patient and nozzle potentially occur because of the large nozzle structure and efforts to minimize the air gap. Thus, software was developed to predict such collisions between the nozzle and patient using treatment virtual simulation. METHODS: Three-dimensional (3D) modeling of a gantry inner-floor, nozzle, and robotic-couch was performed using SolidWorks based on the manufacturer's machine data. To obtain patient body information, a 3D-scanner was utilized right before CT scanning. Using the acquired images, a 3D-image of the patient's body contour was reconstructed. The accuracy of the image was confirmed against the CT image of a humanoid phantom. The machine components and the virtual patient were combined on the treatment-room coordinate system, resulting in a virtual simulator. The simulator simulated the motion of its components such as rotation and translation of the gantry, nozzle, and couch in real scale. A collision, if any, was examined both in static and dynamic modes. The static mode assessed collisions only at fixed positions of the machine's components, while the dynamic mode operated any time a component was in motion. A collision was identified if any voxels of two components, e.g., the nozzle and the patient or couch, overlapped when calculating volume locations. The event and collision point were visualized, and collision volumes were reported. RESULTS: All components were successfully assembled, and the motions were accurately controlled. The 3D-shape of the phantom agreed with CT images within a deviation of 2 mm. Collision situations were simulated within minutes, and the results were displayed and reported. CONCLUSIONS: The developed software will be useful in improving patient safety and clinical efficiency of proton therapy.


Subject(s)
Proton Therapy/instrumentation , Radiotherapy, Computer-Assisted/instrumentation , Computer Graphics , Humans , Imaging, Three-Dimensional , Robotics , Software , Tomography, X-Ray Computed
3.
Med Phys ; 37(6): 2925-33, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20632604

ABSTRACT

PURPOSE: Accurate dosimetry is essential to ensure the quality of advanced radiation treatments, such as intensity modulated radiation therapy (IMRT). Therefore, a comparison study was conducted to assess the accuracy of various film dosimetry techniques that are widely used in clinics. METHODS: A simulated IMRT plan that produced an inverse pyramid dose distribution in a perpendicular plane of the beam axis was designed with 6 MV x rays to characterize the large contribution of scattered photons to low dose regions. Three film dosimetry techniques, EDR2, EDR2 with low-energy photon absorption lead filters (EDR2 WF), and GafChromic EBT, were compared to ionization chamber measurements as well as Monte Carlo (MC) simulations. The accuracy of these techniques was evaluated against the ionization chamber data. Two-dimensional comparisons with MC simulation results were made by computing the gamma index (gamma) with criteria ranging from 2% of dose difference or 2 mm of distance to agreement (2%/2 mm) to 4%/4 mm on the central vertical plane (20 x 20 cm2) of a square solid water phantom. Depth doses and lateral profiles at depths of 5, 10, and 15 cm were examined to characterize the deviation of film measurements and MC predictions from ionization chamber measurements. RESULTS: In depth dose comparisons, the deviation between the EDR2 films was 9% in the low dose region and 5% in high dose region, on average. With lead filters, the average deviation was reduced to -1.3% and -0.3% in the low dose and high dose regions, respectively. EBT film results agreed within 1.5% difference on average with ionization chamber measurements in low and high dose regions. In two-dimensional comparisons with MC simulation, EDR2 films passed gamma tests with a 2%/2 mm criterion only in the high dose region (gamma < or = 1, total of 63.06% of the tested region). In the low dose region, EDR2 films passed gamma tests with 3%/3 mm criterion (gamma < or = 1, total of 98.4% of the tested region). For EDR2 WF and GafChromic EBT films, gamma tests with a 2% /2 mm criterion (gamma < or = 1) in the tested area was 97.3% and 96.8% of the tested region, respectively. CONCLUSIONS: The EDR2 film WF and GafChromic EBT film achieved an average accuracy level of 1.5% against an ionization chamber. These two techniques agreed with the MC prediction in 2%/2mm criteria evaluated by the gamma index, whereas EDR2 without filters achieved an accuracy level of 3%/3 mm with the decision criteria of agreement greater than 95% of the tested region. The overall results will provide a useful quantitative reference for IMRT verifications.


Subject(s)
Film Dosimetry/instrumentation , Film Dosimetry/standards , Quality Assurance, Health Care/methods , Quality Assurance, Health Care/standards , Radiotherapy, Conformal/instrumentation , Radiotherapy, Conformal/standards , Equipment Failure Analysis/methods , Equipment Failure Analysis/standards , Internationality , Reproducibility of Results , Sensitivity and Specificity
4.
Med Biol Eng Comput ; 45(11): 1053-63, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17943336

ABSTRACT

Customized cancer radiation treatment planning for each patient is very useful for both a patient and a doctor because it provides the ability to deliver higher doses to a more accurately defined tumor and at the same time lower doses to organs at risk and normal tissues. This can be realized by building an accurate planning simulation system to provide better treatment strategies based on each patient's tomographic data such as CT, MRI, PET, or SPECT. In this study, we develop a real-time online client-server/client collaborative environment between the client (health care professionals or hospitals) and the server/client under a secure network using telematics (the integrated use of telecommunications and medical informatics). The implementation is based on a point-to-point communication scheme between client and server/client following the WYSIWIS (what you see is what I see) paradigm. After uploading the patient tomographic data, the client is able to collaborate with the server/client for treatment planning. Consequently, the level of health care services can be improved, specifically for small radiotherapy clinics in rural/remote-country areas that do not possess much experience or equipment such as a treatment planning simulator. The telematics service of the system can also be used to provide continued medical education in radiotherapy. Moreover, the system is easy to use. A client can use the system if s/he is familiar with the Windows(TM) operating system because it is designed and built based on a user-friendly concept. This system does not require the client to continue hardware and software maintenance and updates. These are performed automatically by the server.


Subject(s)
Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Teleradiology/methods , Humans , Neoplasms/diagnostic imaging , Online Systems , Radiotherapy Dosage , Teleradiology/instrumentation , Tomography, X-Ray Computed
5.
J Chem Phys ; 121(20): 9808-19, 2004 Nov 22.
Article in English | MEDLINE | ID: mdl-15549854

ABSTRACT

Parallel replica dynamics simulation methods appropriate for the simulation of chemical reactions in molecular systems with many conformational degrees of freedom have been developed and applied to study the microsecond-scale pyrolysis of n-hexadecane in the temperature range of 2100-2500 K. The algorithm uses a transition detection scheme that is based on molecular topology, rather than energetic basins. This algorithm allows efficient parallelization of small systems even when using more processors than particles (in contrast to more traditional parallelization algorithms), and even when there are frequent conformational transitions (in contrast to previous implementations of the parallel replica algorithm). The parallel efficiency for pyrolysis initiation reactions was over 90% on 61 processors for this 50-atom system. The parallel replica dynamics technique results in reaction probabilities that are statistically indistinguishable from those obtained from direct molecular dynamics, under conditions where both are feasible, but allows simulations at temperatures as much as 1000 K lower than direct molecular dynamics simulations. The rate of initiation displayed Arrhenius behavior over the entire temperature range, with an activation energy and frequency factor of E(a) = 79.7 kcal/mol and log A/s(-1) = 14.8, respectively, in reasonable agreement with experiment and empirical kinetic models. Several interesting unimolecular reaction mechanisms were observed in simulations of the chain propagation reactions above 2000 K, which are not included in most coarse-grained kinetic models. More studies are needed in order to determine whether these mechanisms are experimentally relevant, or specific to the potential energy surface used.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(1 Pt 2): 017701, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12935292

ABSTRACT

We study the relative usefulness of static and dynamic boundary conditions as a function of system dimensionality. In one space dimension, dynamic boundaries, with the temperatures and velocities of external mirror-image boundary particles linked directly to temperatures and velocities of interior particles, perform qualitatively better than the simpler static-mirror-image boundary condition with fixed boundary temperatures and velocities. In one space dimension, the Euler-Maclaurin sum formula shows that heat-flux errors with dynamic temperature boundaries vary as h(-4), where h is the range of the smooth-particle weight function w(r

SELECTION OF CITATIONS
SEARCH DETAIL
...