Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38667148

ABSTRACT

Nucleic acid amplification reactions such as polymerase chain reaction (PCR), which uses a DNA polymerase to amplify individual double-stranded DNA fragments, are a useful technique for visualizing the presence of specific genomes. Although the fluorescent labeling method is mainly used with DNA amplification, other detection methods should be considered for further improvements, such as miniaturization and cost reduction, of reaction-monitoring devices. In this study, the quartz-crystal microbalance (QCM) method, which can measure nanogram-order masses, was applied for the real-time detection of DNA fragments in a solution with nucleic acids. This was combined with an isothermal nucleic acid amplification reaction based on the recombinase polymerase amplification (RPA) method, which allowed DNA amplification at a constant temperature. When the DNA amplification reaction was initiated on a QCM sensor plate with an immobilized primer DNA strand, a significant increase in mass was observed compared to when the primer DNA was not immobilized. QCM was shown to be sufficiently sensitive for the in situ detection of amplified DNA fragments. Combining a portable QCM device and RPA offers a sensitive point-of-care method for detecting nucleic acids.


Subject(s)
Biosensing Techniques , DNA , Nucleic Acid Amplification Techniques , Quartz Crystal Microbalance Techniques
2.
Dalton Trans ; (11): 1703-7, 2004 Jun 07.
Article in English | MEDLINE | ID: mdl-15252565

ABSTRACT

Homogeneous electron transfer reactions of the Cu(II) complexes of 5,10,15,20-tetraphenylporphyrin (TPP) and 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) with various oxidizing reagents were spectrophotometrically investigated in acetonitrile. The reaction products were confirmed to be the pi-cation radicals of the corresponding Cu(II)-porphyrin complexes on the basis of the electronic spectra and the redox potentials of the complexes. The rate of the electron transfer reaction between the Cu(II)-porphyrin complex and solvated Cu(2+) was determined as a function of the water concentration under the pseudo first-order conditions where Cu(2+) is in large excess over the Cu(II)-porphyrin complex. The decrease in the pseudo first-order rate constant with increasing the water concentration was attributed to the stepwise displacement of acetonitrile in [Cu(AN)(6)](2+)(AN = acetonitrile) by water, and it was concluded that only the Cu(2+) species fully solvated by acetonitrile, [Cu(AN)(6)](2+), possesses sufficiently high redox potential for the oxidation of Cu(ii)-OEP and Cu(ii)-TPP. The reactions of the Cu(II)-porphyrin complexes with other oxidizing reagents such as [Ni(tacn)(2)](3+)(tacn = 1,4,7-triazacyclononane) and [Ru(bpy)(3)](3+)(bpy = 2,2'-bipyridine) were too fast to be followed by a conventional stopped-flow technique. Marcus cross relation for the outer-sphere electron transfer reaction was used to estimate the rate constants of the electron self-exchange reaction between Cu(II)-porphyrin and its pi-cation radical: log(k/M(-1) s(-1))= 9.5 +/- 0.5 for TPP and log(k/M(-1) s(-1))= 11.1 +/- 0.5 for OEP at 25.0 degrees C. Such large electron self-exchange rate constants are typical for the porphyrin-centered redox reactions for which very small inner- and outer-sphere reorganization energies are required.


Subject(s)
Acetonitriles/chemistry , Copper/chemistry , Metalloporphyrins/chemistry , Oxidants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...