Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(2): 3418-3426, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34985245

ABSTRACT

A superconducting joint architecture to join unreacted carbon-doped multifilament magnesium diboride (MgB2) wires with the functionality to screen external magnetic fields for magnetic resonance imaging (MRI) magnet applications is proposed. The intrinsic diamagnetic property of a superconducting MgB2 bulk was exploited to produce a magnetic field screening effect around the current transfer path within the joint. Unprecedentedly, the joint fabricated using this novel architecture was able to screen magnetic fields up to 1.5 T at 20 K and up to 2 T at 15 K and thereby almost nullified the effect of the applied magnetic field by maintaining a constant critical current (Ic). The joint showed an Ic of 30.8 A in 1.5 T at 20 K and an ultralow resistance of about 3.32 × 10-14 Ω at 20 K in a self-field. The magnetic field screening effect shown by the MgB2 joint is expected to be extremely valuable for MRI magnet applications, where the Ic of the joints is lower than the Ic of the connected MgB2 wires in a given magnetic field and temperature.

2.
ACS Appl Mater Interfaces ; 13(2): 3349-3357, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33400882

ABSTRACT

A superconducting joint of unreacted monofilament internal magnesium diffusion-processed magnesium diboride (MgB2) wires was fabricated by exploiting the phenomenon of magnesium diffusion into the boron layer inside the superconducting joint. Unprecedentedly, the joint was able to carry an almost identical transport current compared to the bare wire in a 2-7 T magnetic field at 20 K. The joint also exhibited very low joint resistance of 2.01 × 10-13 Ω in self-field at 20 K. Among commercially available superconductors, this work is the first to successfully realize a superconducting joint that is capable of transferring current from one conductor to another without any notable degradation under strong magnetic fields. This work demonstrates great potential to apply MgB2 in a range of practical applications, where superconducting joints are essential.

3.
Sci Rep ; 9(1): 14287, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31582758

ABSTRACT

Superconducting joints are essential for persistent-mode operation in a superconducting magnet system to produce an ultra-stable magnetic field. Herein, we report rationally designed niobium-titanium (Nb-Ti) superconducting joints and their evaluation results in detail. For practical applications, superconducting joints were fabricated by using a solder matrix replacement method with two types of lead-bismuth (Pb-Bi) solder, including Pb42Bi58 as a new composition. All the joints attained a critical current of >200 A below 1.43 T at 4.2 K. Our optimized superconducting joining method was tested in a closed-loop coil, obtaining a total circuit resistance of 3.25 × 10-14 Ω at 4.2 K in self-field. Finally, persistent-mode operation was demonstrated in an Nb-Ti solenoid coil with a persistent-current switch. This work will pave the way to developing high-performance Nb-Ti superconducting joints for practical applications.

4.
Sensors (Basel) ; 18(11)2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30380790

ABSTRACT

Recently, a project was initiated in Japan to transport a large amount of liquid hydrogen (LH2) from Australia to Japan by sea. It is important to understand the sloshing and boil-off that are likely to occur inside an LH2 tank during marine transportation by ship, but such characteristics are yet to be experimentally clarified. To do so, we combined the liquid level detected by five 500 mm long external-heating-type magnesium diboride (MgB2) level sensors with synchronous measurements of temperature, pressure, ship motion, and acceleration during a zigzag maneuver. During this zigzag maneuver, the pressure of gaseous hydrogen (GH2) in the small LH2 tank increased to roughly 0.67 MPaG/h, and the temperature of the GH2 in the small LH2 tank increased at the position of gaseous hydrogen at roughly 1.0 K/min when the maximum rolling angle was 5°; the average rolling and liquid-oscillation periods were 114 and 118 s, respectively, as detected by the MgB2 level sensors, which therefore detected a long-period LH2 wave due to the ship's motion.

5.
Nanotechnology ; 26(4): 045602, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25556855

ABSTRACT

A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.


Subject(s)
Boron/chemistry , Carbon/chemistry , Nanoshells , Polycyclic Compounds/chemistry , Powders/chemical synthesis , Electron Microscope Tomography , Humans
6.
Sci Technol Adv Mater ; 16(3): 033503, 2015 Jun.
Article in English | MEDLINE | ID: mdl-27877784

ABSTRACT

This review shows the highlights of a 4-year-long research project supported by the Japanese Government to explore new superconducting materials and relevant functional materials. The project found several tens of new superconductors by examining ∼1000 materials, each of which was chosen by Japanese experts with a background in solid state chemistry. This review summarizes the major achievements of the project in newly found superconducting materials, and the fabrication wires and tapes of iron-based superconductors; it incorporates a list of ∼700 unsuccessful materials examined for superconductivity in the project. In addition, described are new functional materials and functionalities discovered during the project.

7.
Sci Rep ; 4: 4065, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24513646

ABSTRACT

The recently discovered iron-based superconductors are potential candidates for high-field magnet applications. However, the critical current densities (J(c)) of iron-based superconducting wires remain far below the level needed for practical applications. Here, we show that the transport Jc of Ba1-xKxFe2As2/Ag tapes is significantly enhanced by the combination process of cold flat rolling and uniaxial pressing. At 4.2 K, Jc exceeds the practical level of 10(5) A/cm(2) in magnetic fields up to 6 T. The J(c)-H curve shows extremely small magnetic field dependence and maintains a high value of 8.6 × 10(4) A/cm(2) in 10 T. These are the highest values reported so far for iron-based superconducting wires. Hardness measurements and microstructure investigations reveal that the superior J(c) in our samples is due to the high core density, more textured grains, and a change in the microcrack structure. These results indicate that iron-based superconductors are very promising for high magnetic field applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...