Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
J Cardiol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876399

ABSTRACT

BACKGROUND: On-site computed tomography-derived fractional flow reserve (CT-FFR) is a feasible method for examining lesion-specific ischemia, and plaque analysis of coronary CT angiography (CCTA) is useful for predicting future cardiac events. However, their utility and association on a per-vessel level remain unclear. METHODS: We analyzed vessels showing 50-90 % stenosis on CCTA where planned revascularization was not performed after CCTA within 90 days. Relevant features, including CT-FFR and the plaque burden [necrotic core to the total plaque volume (% necrotic core), and non-calcified plaque (NCP) to vessel volume (% NCP)] using a novel algorithm for analyzing plaque to predict vessel-oriented composite outcomes (VOCO), including cardiac death, non-fatal myocardial infarction, and unplanned vessel-related revascularization, were assessed. RESULTS: In 256 patients (68.7 ±â€¯9.4 years; 73.8 % male) with 354 vessels (10.5 % CT-FFR ≤0.80), VOCO occurred in 24 vessels (6.8 %) during a median follow-up of 3.6 years. Multivariable Cox analysis revealed CT-FFR ≤0.80 had the pronounced impact on VOCO, and moreover, higher % necrotic core and % NCP were independently associated with VOCO [adjusted hazard ratio 3.43 (95 % confidence interval 1.42-8.29) and 4.05 (1.19-13.71), respectively], especially for vessels with CT-FFR >0.80. CONCLUSIONS: In vessels without planned revascularization, per-vessel CT-FFR ≤0.80 was the notable predictor of future cardiac events. Additionally, necrotic core volume and NCP were identified as independent predictors along with CT-FFR.

2.
Radiol Cardiothorac Imaging ; 5(4): e230016, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37693191

ABSTRACT

Purpose: To investigate whether vorticity could predict functional plaque progression better than high-risk plaque (HRP) and lesion length (LL) in individuals with type 2 diabetes mellitus. Materials and Methods: This single-center prospective study included 61 participants (mean age, 61 years ± 9 [SD]; 43 male participants) who underwent serial coronary CT angiography at 2 years, with 20%-70% stenosis at initial CT between October 2015 and March 2020. The number of the following HRP characteristics was recorded: low attenuation, positive remodeling, spotty calcification, and napkin-ring sign. Vorticity was calculated using a mesh-free simulation. A decrease in CT fractional flow reserve larger than 0.05 indicated functional progression. Models using HRP and LL and vorticity were compared using receiver operating characteristic curve analysis. Results: Of the 94 vessels evaluated, 25 vessels (27%) showed functional progression. Vessels with functional progression showed higher vorticity at distal stenosis (984 sec-1; IQR: 730-1253 vs 443 sec-1; IQR: 295-602; P < .001) than vessels without progression. The area under the receiver operating characteristic curve of vorticity (0.91; 95% CI: 0.84, 0.97) was higher than that of HRP and LL (0.69; 95% CI: 0.56, 0.82; P < .01). Diagnostic accuracy of vorticity (85%; 80 of 94 vessels; 95% CI: 76, 92) was higher than that of HRP and LL (72%; 68 of 94 vessels; 95% CI: 62, 81; P = .004). Conclusion: In participants with type 2 diabetes mellitus, vorticity at distal stenosis was a better predictor of functional plaque progression than HRP and LL.Keywords: Coronary Artery, Vorticity, Functional Plaque Progression, Type 2 Diabetes, Vasculature, CT Angiography, Computational Fluid Dynamics, Fractional Flow Reserve Supplemental material is available for this article. © RSNA, 2023.

3.
Atherosclerosis ; 370: 18-24, 2023 04.
Article in English | MEDLINE | ID: mdl-36754662

ABSTRACT

BACKGROUND AND AIMS: We aimed to develop a method for quantifying pericoronary adipose tissue (PCAT) on electrocardiogram (ECG)-gated non-contrast CT (NC-PCAT) and validate its efficacy and prognostic value. METHODS: We retrospectively studied two independent cohorts. PCAT was quantified conventionally. NC-PCAT was defined as the mean CT value of epicardial fat tissue adjacent to right coronary artery ostium on ECG-gated non-contrast CT. In cohort 1 (n = 300), we evaluated the correlation of two methods and the association between NC-PCAT and CT-verified high-risk plaque (HRP). We dichotomized cohort 2 (n = 333) by the median of NC-PCAT, and assessed the prognostic value of NC-PCAT for primary endpoint (all-cause death and non-fatal myocardial infarction) by Cox regression analysis. The median duration of follow-up was 2.9 years. RESULTS: NC-PCAT was correlated with PCAT (r = 0.68, p<0.0001). In multivariable logistic regression analysis, high NC-PCAT (OR:1.06; 95%CI:1.03-1.10; p = 0.0001), coronary artery calcium score (CACS) (OR:1.01 per 10 CACS increase, 95%CI:1.00-1.02; p = 0.013), and current smoking (OR:2.58; 95%CI:1.03-6.49; p = 0.044) were independent predictors of HRP. Among patients with CACS>0 (n = 193), NC-PCAT (OR:1.06; 95%CI:1.03-1.10; p = 0.0002), current smoking (OR:3.02; 95%CI:1.17-7.82; p = 0.027), and male sex (OR:2.81; 95%CI:1.06-7.48; p = 0.028) were independent predictors of HRP, whereas CACS was not (p = 0.15). Multivariable Cox regression analysis revealed high NC-PCAT as an independent predictor of the primary endpoint, even after adjustment for sex and age (HR:4.3; 95%CI:1.2-15.2; p = 0.012). CONCLUSIONS: There was a positive correlation between NC-PCAT and PCAT, with high NC-PCAT significantly associated with worse clinical outcome (independent of CACS) as well as presence of HRP.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Humans , Male , Coronary Artery Disease/diagnostic imaging , Coronary Angiography/methods , Retrospective Studies , Tomography, X-Ray Computed/methods , Adipose Tissue/diagnostic imaging , Electrocardiography , Computed Tomography Angiography/methods , Coronary Vessels/diagnostic imaging
4.
Magn Reson Med Sci ; 22(3): 301-312, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-35296610

ABSTRACT

PURPOSE: The effect of temporal sampling rate (TSR) on perfusion parameters has not been fully investigated in Moyamoya disease (MMD); therefore, this study evaluated the influence of different TSRs on perfusion parameters quantitatively and qualitatively by applying simultaneous multi-slice (SMS) dynamic susceptibility contrast-enhanced MR imaging (DSC-MRI). METHODS: DSC-MRI datasets were acquired from 28 patients with MMD with a TSR of 0.5 s. Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), time to peak (TTP), and time to maximum tissue residue function (Tmax) were calculated for eight TSRs ranging from 0.5 to 4.0 s in 0.5-s increments that were subsampled from a TSR of 0.5 s datasets. Perfusion measurements and volume for chronic ischemic (Tmax ≥ 2 s) and non-ischemic (Tmax < 2 s) areas for each TSR were compared to measurements with a TSR of 0.5 s, as was visual perfusion map analysis. RESULTS: CBF, CBV, and Tmax values tended to be underestimated, whereas MTT and TTP values were less influenced, with a longer TSR. Although Tmax values were overestimated in the TSR of 1.0 s in non-ischemic areas, differences in perfusion measurements between the TSRs of 0.5 and 1.0 s were generally minimal. The volumes of the chronic ischemic areas with a TSR ≥ 3.0 s were significantly underestimated. In CBF and CBV maps, no significant deterioration was noted in image quality up to 3.0 and 2.5 s, respectively. The image quality of MTT, TTP, and Tmax maps for the TSR of 1.0 s was similar to that for the TSR of 0.5 s but was significantly deteriorated for the TSRs of ≥ 1.5 s. CONCLUSION: In the assessment of MMD by SMS DSC-MRI, application of TSRs of ≥ 1.5 s may lead to deterioration of the perfusion measurements; however, that was less influenced in TSRs of ≤ 1.0 s.


Subject(s)
Moyamoya Disease , Humans , Moyamoya Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Perfusion , Cerebrovascular Circulation
5.
Am Heart J Plus ; 35: 100328, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38511178

ABSTRACT

Background: We aimed to investigate the diagnostic value of energy loss (EL) and baseline CT fractional flow reserve (CT-FFR) computed using computational fluid dynamics to predict functional progression of coronary stenosis in patients with type 2 diabetes mellitus. Methods: This single-center prospective study included 61 patients with type 2 diabetes mellitus (mean age, 61 years ±9 [SD]; 43 men) showing 20-70 % stenosis who underwent serial coronary CT performed at 2-year interval between October 2015 and March 2020. A mesh-free simulation was performed to calculate the CT-FFR and EL. Functional progression was defined as ≥ 0.05 decrease in CT-FFR on the second coronary CT. Models using baseline CT-FFR and EL were compared by analyzing the receiver operating characteristic (ROC) curve. Results: Of the 94 vessels evaluated, 25 vessels (27 %) showed functional progression. EL at distal stenosis (ELdis) of vessels with functional progression was higher than that of vessels without functional progression (27.6 W/m3 [interquartile range (IQR): 15.0, 53.0] vs. 5.7 W/m3 [IQR: 2.3, 10.1], p < 0.001). Multivariable analysis showed that ELdis (per unit Ln(EL); odds ratio, 11.8; 95 % CI: 4.0-34.9; p < 0.001) remained as a predictor of functional progression after adjustment for diameter stenosis and baseline CT-FFR. The area under the ROC curve using ELdis (0.89; 95 % CI: 0.82-0.96) was higher than that using baseline CT-FFR (0.71; 95 % CI: 0.59-0.83; p < 0.001). Conclusion: When ELdis and baseline CT-FFR were considered, ELdis was a better predictor of functional progression of coronary stenosis.

6.
Eur Radiol ; 32(10): 6859-6867, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35778509

ABSTRACT

OBJECTIVES: Vorticity calculated using computational fluid dynamics (CFD) could assess the flow disturbance generated by coronary stenosis. The purpose of this study was to investigate whether vorticity would be an underlying cause of functionally significant stenosis assessed by invasive fractional flow reserve (FFR). METHODS: This retrospective study included 113 patients who underwent coronary CT angiography showing intermediate stenosis and subsequent invasive FFR between December 2015 and March 2020. Vorticity at the stenosis site was calculated using a mesh-free CFD method. We also evaluated the minimum lumen area (MLA) and diameter stenosis (DS) of the lesion. Invasive FFR of ≤ 0.80 was considered functionally significant. Data were compared using Student's t-test and logistic regression analysis was performed. RESULTS: Of the evaluated 144 vessels, 53 vessels (37%) showed FFR ≤ 0.80. Vorticity of significant stenosis was significantly higher than non-significant stenosis (569 ± 78 vs. 328 ± 34 s-1, p < 0.001). A significant negative relationship was present between vorticity and invasive FFR (R2 = 0.31, p < 0.001). Multivariate logistic regression analysis including MLA and DS showed that vorticity (per 100 s-1, odds ratio: 1.36, 95% confidence interval: 1.21-1.57, p < 0.001) was a statistically significant factor to detect functional significance. The area under the receiver operating characteristic curve statistically significantly increased when vorticity was combined with DS and MLA (0.76 vs. 0.87, p = 0.001). CONCLUSIONS: Vorticity had a statistically significant negative relationship with invasive FFR independent of geometric stenosis. KEY POINTS: • Flow disturbance caused by coronary stenosis could be evaluated by calculating vorticity which is defined as the norm of the rotation of the velocity vector. • Vorticity was statistically significantly higher in stenosis with functional significance than stenosis without. • Vorticity has an additive value to detect functionally significant stenosis over geometrical stenosis.


Subject(s)
Coronary Stenosis , Fractional Flow Reserve, Myocardial , Constriction, Pathologic/pathology , Coronary Angiography/methods , Coronary Stenosis/diagnosis , Coronary Vessels , Humans , Predictive Value of Tests , Retrospective Studies , Severity of Illness Index
7.
J Cardiol ; 80(1): 14-21, 2022 07.
Article in English | MEDLINE | ID: mdl-35361522

ABSTRACT

BACKGROUND: On-site computed tomography-derived fractional flow reserve (CT-FFR), using fluid structure interaction during multiple optimal diastolic phases, is of incremental diagnostic value. However, few studies have investigated prognosis, with the appropriate measurement location of CT-FFR, as a stand-alone modality. The aim of the present study was to assess the clinical impact on CT-FFR with an appropriate measurement. METHODS: A total of 370 consecutive patients (68 ±â€¯10 years, 75% male) who underwent coronary CT angiography (CCTA), showing 50-90% stenosis in at least one major epicardial vessel, were retrospectively analyzed and followed up for a median 2.9 years. CT-FFR values were measured at three points: 1 to 2 cm distal to the target lesion (CT-FFR1cm, 2cm) and the vessel terminus (CT-FFRlowest), and a CT-FFR value ≤0.80 was considered to be abnormal. The endpoint was major adverse cardiovascular events (MACE), a composite of cardiac death, non-fatal myocardial infarction, and unplanned revascularization. RESULTS: The incidence of MACE was 6.8% (25/370 patients). The Kaplan-Meier survival analysis in negative CT-FFR1/2cm revealed no significant difference in MACE between negative and positive CT-FFRlowest [p = 0.11/0.23 (1/2 cm vs lowest)]. Among 221 patients who did not undergo planned revascularization within 90 days of CCTA, no significant differences were noted in the incidence of MACE between negative and positive CT-FFRlowest (p = 0.11). In contrast, the risk of MACE was significantly higher with positive CT-FFR1/2cm [p = 0.0198/0.0002 (1/2 cm)]. CONCLUSIONS: In terms of the prognosis of patients with moderate to severe stenosis on CCTA, CT-FFR measured 1 to 2 cm distal to the target lesion may be feasible for the safe deferral of unnecessary invasive coronary angiography. Moreover, CT-FFR1/2cm showed better risk stratification than CT-FFRlowest based on future adverse cardiac events.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Computed Tomography Angiography/adverse effects , Constriction, Pathologic/complications , Coronary Angiography/adverse effects , Coronary Artery Disease/complications , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/diagnostic imaging , Female , Humans , Male , Predictive Value of Tests , Prognosis , Retrospective Studies , Tomography, X-Ray Computed
8.
Acad Radiol ; 29 Suppl 2: S11-S17, 2022 02.
Article in English | MEDLINE | ID: mdl-32839096

ABSTRACT

RATIONALE AND OBJECTIVES: A more accurate lung nodule detection algorithm is needed. We developed a modified three-dimensional (3D) U-net deep-learning model for the automated detection of lung nodules on chest CT images. The purpose of this study was to evaluate the accuracy of the developed modified 3D U-net deep-learning model. MATERIALS AND METHODS: In this Health Insurance Portability and Accountability Act-compliant, Institutional Review Board-approved retrospective study, the 3D U-net based deep-learning model was trained using the Lung Image Database Consortium and Image Database Resource Initiative dataset. For internal model validation, we used 89 chest CT scans that were not used for model training. For external model validation, we used 450 chest CT scans taken at an urban university hospital in Japan. Each case included at least one nodule of >5 mm identified by an experienced radiologist. We evaluated model accuracy using the competition performance metric (CPM) (average sensitivity at 1/8, 1/4, 1/2, 1, 2, 4, and 8 false-positives per scan). The 95% confidence interval (CI) was computed by bootstrapping 1000 times. RESULTS: In the internal validation, the CPM was 94.7% (95% CI: 89.1%-98.6%). In the external validation, the CPM was 83.3% (95% CI: 79.4%-86.1%). CONCLUSION: The modified 3D U-net deep-learning model showed high performance in both internal and external validation.


Subject(s)
Deep Learning , Lung Neoplasms , Humans , Japan , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed/methods
9.
Int J Comput Assist Radiol Surg ; 17(1): 97-105, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34674136

ABSTRACT

PURPOSE: Artery contrasted computed tomography (CT) enables accurate observations of the arteries and surrounding structures, thus being widely used for the diagnosis of diseases such as aneurysm. To avoid the complications caused by contrast agent, this paper proposes an aorta-aware deep learning method to synthesize artery contrasted CT volume form non-contrast CT volume. METHODS: By introducing auxiliary multi-resolution segmentation tasks in the generator, we force the proposed network to focus on the regions of aorta and the other vascular structures. Then, the segmentation results produced by the auxiliary tasks were used to extract aorta. The detection of abnormal CT images containing aneurysm was implemented by estimating the maximum axial radius of aorta. RESULTS: In comparison with the baseline models, the proposed network with auxiliary tasks achieved better performances with higher peak signal-noise ratio value. In aorta regions which are supposed to be the main region of interest in many clinic scenarios, the average improvement can be up to 0.33dB. Using the synthesized artery contrasted CT, the F score of aneurysm detection achieved 0.58 at slice level and 0.85 at case level. CONCLUSION: This study tries to address the problem of non-contrast to artery contrasted CT modality translation by employing a deep learning model with aorta awareness. The auxiliary tasks help the proposed model focus on aorta regions and synthesize results with clearer boundaries. Additionally, the synthesized artery contrasted CT shows potential in identifying slices with abdominal aortic aneurysm, and may provide an option for patients with contrast agent allergy.


Subject(s)
Aortic Aneurysm, Abdominal , Aorta , Aortic Aneurysm, Abdominal/diagnostic imaging , Humans , Tomography, X-Ray Computed
10.
Magn Reson Med Sci ; 21(3): 517-524, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-34305081

ABSTRACT

The volumes of intracranial tissues of 40 healthy volunteers acquired from 0.3- and 3-T scanners were compared using intraclass correlation coefficients, correlation analyses, and Bland-Altman analyses. We found high intraclass correlation coefficients, high Pearson's correlation coefficients, and low percentage biases in all tissues and most of the brain regions, although small differences were observed in some areas. These findings may support the validity of brain volumetry with low-field magnetic resonance imaging.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Brain/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Reproducibility of Results
11.
Radiol Cardiothorac Imaging ; 4(6): e220147, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36601450

ABSTRACT

Purpose: To investigate whether coronary flow kinetic energy has incremental value over simulated fractional flow reserve (sFFR) in diagnosing hemodynamically significant stenosis assessed with coronary CT angiography and invasive fractional flow reserve (FFR). Materials and Methods: This single-center retrospective study included 113 patients (mean age, 68 years ± 9 [SD]; 80 men) who underwent coronary CT angiography showing intermediate stenosis (30%-70% stenosis) and subsequent invasive FFR between December 2015 and March 2020. Kinetic energy was calculated using proximal coronary diameter and myocardial mass of the stenotic region. A mesh-free simulation was performed to calculate the sFFR. Invasive FFR of 0.80 or less indicated hemodynamically significant stenosis. Models using diameter stenosis, kinetic energy, and sFFR were compared by analyzing the receiver operating characteristic curve. Results: Of the 144 vessels evaluated, 53 vessels (37%) had hemodynamically significant stenosis. Kinetic energy of vessels with significant stenosis was higher than that of vessels with nonsignificant stenosis (79 mJ/kg [IQR, 58-104 mJ/kg] vs 36 mJ/kg [IQR, 23-59 mJ/kg]; P < .001). Multivariable analysis including diameter stenosis and sFFR showed that kinetic energy (per 20 mJ/kg; odds ratio, 1.92; 95% CI: 1.37, 2.95; P < .001) was a predictor of hemodynamically significant stenosis. Adding kinetic energy to diameter stenosis and sFFR improved the area under the receiver operating characteristic curve from 0.89 (95% CI: 0.84, 0.95) to 0.93 (95% CI: 0.89, 0.97) (P = .04). Conclusion: Kinetic energy had incremental value over sFFR in detecting hemodynamically significant stenosis assessed with invasive FFR.Keywords: Coronary CT Angiography, Coronary Arteries, Fractional Flow Reserve, Kinetic Energy, Cardiac Supplemental material is available for this article © RSNA, 2022.

12.
J Clin Med ; 10(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34640414

ABSTRACT

Although on-site workstation-based CT fractional flow reserve (CT-FFR) is an emerging method for assessing vessel-specific ischemia in coronary artery disease, severe calcification is a significant factor affecting CT-FFR's diagnostic performance. The subtraction method significantly improves the diagnostic value with respect to anatomic stenosis for patients with severe calcification in coronary CT angiography (CCTA). We evaluated the diagnostic capability of CT-FFR using the subtraction method (subtraction CT-FFR) in patients with severe calcification. This study included 32 patients with 45 lesions with severe calcification (Agatston score >400) who underwent both CCTA and subtraction CCTA using 320-row area detector CT and also received invasive FFR within 90 days. The diagnostic capabilities of CT-FFR and subtraction CT-FFR were compared. The sensitivities, specificities, positive predictive values (PPVs), and negative predictive values (NPVs) of CT-FFR vs. subtraction CT-FFR for detecting hemodynamically significant stenosis, defined as FFR ≤ 0.8, were 84.6% vs. 92.3%, 59.4% vs. 75.0%, 45.8% vs. 60.0%, and 90.5% vs. 96.0%, respectively. The area under the curve for subtraction CT-FFR was significantly higher than for CT-FFR (0.84 vs. 0.70) (p = 0.04). The inter-observer and intra-observer variabilities of subtraction CT-FFR were 0.76 and 0.75, respectively. In patients with severe calcification, subtraction CT-FFR had an incremental diagnostic value over CT-FFR, increasing the specificity and PPV while maintaining the sensitivity and NPV with high reproducibility.

13.
Heliyon ; 7(8): e07859, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34485738

ABSTRACT

The objective of this study was to apply the multi-agent system (MAS) collision model to predict seasonal influenza epidemic in Tokyo for 5 seasons (2014-2015 to 2018-2019 seasons). The MAS collision model assumes each individual as a particle inside a square domain. The particles move within the domain and disease transmission occurs in a certain probability when an infected particle collides a susceptible particle. The probability was determined based on the basic reproduction number calculated using the actual data. The simulation started with 1 infected particle and 999 susceptible particles to correspond to the onset of an influenza epidemic. We performed the simulation for 150 days and the calculation was repeated 500 times for each season. To improve the accuracy of the prediction, we selected simulations which have similar incidence number to the actual data in specific weeks. Analysis including all simulations corresponded good to the actual data in 2014-2015 and 2015-2016 seasons. However, the model failed to predict the sharp peak incidence after the New Year Holidays in 2016-2017, 2017-2018, and 2018-2019 seasons. A model which included simulations selected by the week of peak incidence predicted the week and number of peak incidence better than a model including all simulations in all seasons. The reproduction number was also similar to the actual data in this model. In conclusion, the MAS collision model predicted the epidemic curve with good accuracy by selecting the simulations using the actual data without changing the initial parameters such as the basic reproduction number and infection time.

14.
Int J Cardiol Heart Vasc ; 35: 100815, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34189251

ABSTRACT

BACKGROUND: Computed tomography fractional flow reserve (CT-FFR), which can be acquired on-site workstation using fluid structure interaction during the multiple optimal diastolic phase, has an incremental diagnostic value over conventional coronary computed tomography angiography (CCTA). However, the appropriate location for CT-FFR measurement remains to be clarified. METHOD: A total of 115 consecutive patients with 149 vessels who underwent CCTA showing 30-90% stenosis with invasive FFR within 90 days were retrospectively analyzed. CT-FFR values were measured at three points: 1 and 2 cm distal to the target lesion (CT-FFR1cm, 2cm) and the vessel terminus (CT-FFRlowest). The diagnostic accuracies of CT-FFR ≤ 0.80 for detecting hemodynamically significant stenosis, defined as invasive FFR ≤ 0.80, were compered. RESULT: Fifty-five vessels (36.9%) had invasive FFR ≤ 0.80. The accuracy and AUC for CT-FFR1cm and 2cm were comparable, while the AUC for CT-FFRlowest was significantly lower than CT-FFR1cm and 2cm. (lowest/1cm, 2 cm = 0.68 (95 %CI 0.63-0.73) vs 0.79 (0.72-0.86, p = 0.006), 0.80 (0.73-0.87, p = 0.002)) The sensitivity and negative predictive value of CT-FFRlowest were 100%. The reclassification rates from positive CT-FFRlowest to negative CT-FFR1cm and 2cm were 55.7% and 54.2%, respectively. CONCLUSION: The diagnostic performance of CT-FFR was comparable when measured at 1-to-2 cm distal to the target lesion, but significantly higher than CT-FFRlowest. The lesion-specific CT-FFR could reclassify false positive cases in patients with positive CT-FFRlowest, while all patients with negative CT-FFRlowest were diagnosed as negative by invasive FFR.

15.
Clin Imaging ; 79: 230-234, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34119915

ABSTRACT

OBJECTIVE: With the initiative of the ACR International Economics Committee, a multinational survey was conducted to evaluate radiology residency programs around the world. METHODS: A 31-question survey was developed. It included: economic issues, program size and length, resident's activities during daytime and call, academic aspects including syllabus and examinations. Data was tabulated using the forementioned thematic framework and was qualitatively analyzed. RESULTS: Responses were received from all 17 countries that were invited to participate (France, Netherlands, Israel, UK, Russia, USA, Japan, India, Germany, Canada, Turkey, Croatia, Serbia, Italy, Ireland, Hungary, and Greece). Residency length varied between 2 and 5 years. The certificate of residency completion is provided by a local hospital [4/17 (23%)], University [6/17 (36%)], National Board [6/17 (36%)], and Ministry of Health [1/17 (6%)]. There was variability among the number of residency programs and residents per program ranging from 15 to 300 programs per nation with a 1-700 residents in each one respectively. Salaries varied significantly and ranged from 8000 to 75,000 USD equivalent. Exams are an integral part of training in all surveyed countries. Length of call varied between 5 and 26 h and the number of monthly calls ranged from 3 to 6. The future of radiology was judged as growing in [12/17 (70%)] countries and stagnant in [5/17 (30%)] countries. DISCUSSION: Radiology residency programs worldwide have many similarities. The differences are in the structure of the residency programs. Stagnation and uncertainties need to be addressed to ensure the continued development of the next generation of radiologists. SUMMARY STATEMENT: There are many similarities in the academic aims and approach to education and training of radiology residency programs worldwide. The differences are in the structure of the residency programs and payments to individual residents.


Subject(s)
Internship and Residency , Radiology , Humans , Radiography , Radiology/education , Salaries and Fringe Benefits , Surveys and Questionnaires , United States
16.
Heart Vessels ; 36(4): 461-471, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33219413

ABSTRACT

BACKGROUND: Fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) are useful in determining indications for revascularization of coronary artery disease (CAD). Although the discordance of FFR and iFR was noted in approximately 20%, this cause has not been well established. We investigated patient background and features on coronary CT angiography (CCTA) showing not only FFR- and iFR-positive findings but also discordance between FFR ≤ 0.8 and iFR ≤ 0.89. METHODS: Subjects were consecutively treated in 83 cases with 105 vessels in which stenosis of 30-90% was detected at one vessel of at least 2 mm or more in the major epicardial vessels and FFR and iFR was performed within subsequent 90 days, among suspected CAD which underwent CCTA. The factors affecting not only FFR- and iFR-positive findings, respectively, but also discordance between FFR and iFR was evaluated using logistic regression analysis on per-patient and per-vessel basis. RESULTS: FFR- and iFR-positive findings were observed in 42 vessels (40.0%) and 34 vessels (32.3%), respectively. Discordance between FFR ≤ 0.8 and iFR ≤ 0.89 was observed in 22 vessels (21.0%) of 21 patients. In multivariate logistic analysis, LAD (OR 3.55; 95%CI 1.20-11.71; p = 0.0217) and lumen volume/myocardial weight (L/M) ratio (OR 0.93; 0.86-0.99, p = 0.0290) were significant predictors for FFR-positive findings. For iFR-positive findings, LAD (OR 3.86; 95%CI 1.12-13.31; p = 0.0236) was only significant predictor. In FFR ≤ 0.8 and iFR > 0.89 group (15 vessels, 14.3%), positive remodeling (PR) (OR 5.03, 95%CI 1.23-20.48, p = 0.0205) was significant predictor. In FFR > 0.8 and iFR ≤ 0.89 group (7 vessels, 6.7%), there were no significant predictors. CONCLUSION: On CCTA characteristics, a relevant predictor for FFR-positive findings included low L/M ratio. PR was significant predictor in FFR-positive, iFR-negative patients among those with discordance between the FFR and iFR.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Stenosis/diagnosis , Coronary Vessels/diagnostic imaging , Fractional Flow Reserve, Myocardial/physiology , Plaque, Atherosclerotic/diagnosis , Aged , Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Female , Follow-Up Studies , Humans , Male , Plaque, Atherosclerotic/physiopathology , Predictive Value of Tests , Retrospective Studies , Severity of Illness Index
17.
Can Assoc Radiol J ; 72(1): 135-141, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32066249

ABSTRACT

PURPOSE: The aim of this study was to determine the status of radiology quality improvement programs in a variety of selected nations worldwide. METHODS: A survey was developed by select members of the International Economics Committee of the American College of Radiology on quality programs and was distributed to committee members. Members responded on behalf of their country. The 51-question survey asked about 12 different quality initiatives which were grouped into 4 themes: departments, users, equipment, and outcomes. Respondents reported whether a designated type of quality initiative was used in their country and answered subsequent questions further characterizing it. RESULTS: The response rate was 100% and represented Australia, Canada, China, England, France, Germany, India, Israel, Japan, the Netherlands, Russia, and the United States. The most frequently reported quality initiatives were imaging appropriateness (91.7%) and disease registries (91.7%), followed by key performance indicators (83.3%) and morbidity and mortality rounds (83.3%). Peer review, equipment accreditation, radiation dose monitoring, and structured reporting were reported by 75.0% of respondents, followed by 58.3% of respondents for quality audits and critical incident reporting. The least frequently reported initiatives included Lean/Kaizen exercises and physician performance assessments, implemented by 25.0% of respondents. CONCLUSION: There is considerable diversity in the quality programs used throughout the world, despite some influence by national and international organizations, from whom further guidance could increase uniformity and optimize patient care in radiology.


Subject(s)
Health Care Surveys/methods , Program Evaluation/methods , Quality Improvement/statistics & numerical data , Quality of Health Care/statistics & numerical data , Radiology/standards , Safety/statistics & numerical data , Asia , Australia , Canada , Europe , Health Care Surveys/statistics & numerical data , Humans , Internationality , Program Evaluation/statistics & numerical data , Radiology/statistics & numerical data , Societies, Medical , United States
18.
Magn Reson Med Sci ; 20(4): 347-358, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-33239490

ABSTRACT

PURPOSE: To investigate safety management at Japanese facilities performing human MRI studies. METHODS: All Japanese facilities performing human MRI studies were invited to participate in a comprehensive survey that evaluated their MRI safety management. The survey used a questionnaire prepared with the cooperation of the Safety Committee of the Japanese Society for Magnetic Resonance in Medicine. The survey addressed items pertaining to the overall MRI safety management, questions on the occurrence of incidents, and questions specific to facility and MRI scanner or examination. The survey covered the period from October 2017 to September 2018. Automated machine learning was used to identify factors associated with major incidents. RESULTS: Of 5914 facilities, 2015 (34%) responded to the questionnaire. There was a wide variation in the rate of compliance with MRI safety management items among the participating facilities. Among the facilities responding to this questionnaire, 5% reported major incidents and 27% reported minor incidents related to MRI studies. Most major incidents involved the administration of contrast agents. The most influential factor in major incidents was the total number of MRI studies performed at the facility; this number was significantly correlated with the risk of major incidents (P < 0.0001). CONCLUSION: There were large variations in the safety standards applied at Japanese facilities performing clinical MRI studies. The total number of MRI studies performed at a facility affected the number of major incidents.


Subject(s)
Magnetic Resonance Imaging , Safety Management , Contrast Media , Humans , Japan , Surveys and Questionnaires
19.
3D Print Med ; 6(1): 19, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32761497

ABSTRACT

BACKGROUND: Three-dimensional printing (3DP) offers a unique opportunity to build flexible vascular patient-specific coronary models for device testing, treatment planning, and physiological simulations. By optimizing the 3DP design to replicate the geometrical and mechanical properties of healthy and diseased arteries, we may improve the relevance of using such models to simulate the hemodynamics of coronary disease. We developed a method to build 3DP patient specific coronary phantoms, which maintain a significant part of the coronary tree, while preserving geometrical accuracy of the atherosclerotic plaques and allows for an adjustable hydraulic resistance. METHODS: Coronary computed tomography angiography (CCTA) data was used within Vitrea (Vital Images, Minnetonka, MN) cardiac analysis application for automatic segmentation of the aortic root, Left Anterior Descending (LAD), Left Circumflex (LCX), Right Coronary Artery (RCA), and calcifications. Stereolithographic (STL) files of the vasculature and calcium were imported into Autodesk Meshmixer for 3D model optimization. A base with three chambers was built and interfaced with the phantom to allow fluid collection and independent distal resistance adjustment of the RCA, LAD and LCX and branching arteries. For the 3DP we used Agilus for the arterial wall, VeroClear for the base and a Vero blend for the calcifications, respectively. Each chamber outlet allowed interface with catheters of varying lengths and diameters for simulation of hydraulic resistance of both normal and hyperemic coronary flow conditions. To demonstrate the manufacturing approach appropriateness, models were tested in flow experiments. RESULTS: Models were used successfully in flow experiments to simulate normal and hyperemic flow conditions. The inherent mean resistance of the chamber for the LAD, LCX, and RCA, were 1671, 1820, and 591 (dynes ∙ sec/ cm5), respectively. This was negligible when compared with estimates in humans, with the chamber resistance equating to 0.65-5.86%, 1.23-6.86%, and 0.05-1.67% of the coronary resistance for the LAD, LCX, and RCA, respectively at varying flow rates and activity states. Therefore, the chamber served as a means to simulate the compliance of the distal coronary trees and to allow facile coupling with a set of known resistance catheters to simulate various physical activity levels. CONCLUSIONS: We have developed a method to create complex 3D printed patient specific coronary models derived from CCTA, which allow adjustable distal capillary bed resistances. This manufacturing approach permits comprehensive coronary model development which may be used for physiologically relevant flow simulations.

20.
Int J Cardiol Heart Vasc ; 29: 100571, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32642552

ABSTRACT

BACKGROUND: The concept of active atherosclerotic disease has been accepted for heart valve calcification (HVC). We investigated prevalence, distribution and related factors of HVC in patients who had undergone coronary CT angiography (CCTA). METHODS: Subjects were consecutive 200 patients who underwent CCTA. The prevalence and the distribution of HVC using ECG gated non-contrast CT were investigated. Logistic regression analysis and simple regression analysis for factors associated with presence of the calcification and quantitative calcification in the aortic and mitral valve were conducted. RESULTS: HVC was detected in 48.0%. Aortic valve calcification (AVC) was found in 92 cases, the most, followed by mitral valve calcification (MVC) in 25 cases, pulmonary valve in 3 cases, and tricuspid valve in 1 case. Although the left coronary cusp showed the most in 65.2%, no statistic significant difference for Agatston score was detected among each cusp in AVC. Multiple logistic regression analysis showed that age (OR:1.211, 95%C.I.:1.0716-1.1728, p < 0.0001) and coronary artery calcium score (CACS) grade (grade2 OR:7.3393, 95%C.I.:1.7699-30.4349, p = 0.0060, grade3 OR:7.2214, 95%C.I.:1.4376-36.2762, p = 0.0164) were significant factors associated with presence of AVC. The significant factors associated with quantitative AVC were age (p = 0.0043), dyslipidemia (p = 0.0117), and statin use (p = 0.0221). Only age (OR:1.1589, 95%C.I.:1.0726-1.2520, p = 0.0002) was significant factor related to presence of MVC. No significant related factor was found in quantitative MVC. CONCLUSIONS: There was an association between presence of AVC and CACS, but not a significant association with presence of MVC. Neither quantitative AVC nor MVC had a significant association with CACS or coronary artery disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...