Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Dev ; 35(21-22): 1510-1526, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34593603

ABSTRACT

Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3' end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3' end. Several CPF subunits, including Fip1, contain intrinsically disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively labeled Fip1 into recombinant CPF, we could study the dynamics of Fip1 within the megadalton complex using nuclear magnetic resonance (NMR) spectroscopy. This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics within the 3' end processing machinery are required to coordinate cleavage and polyadenylation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Polyadenylation , RNA Precursors/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism
2.
Genes Dev ; 35(17-18): 1290-1303, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34385261

ABSTRACT

Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Polyadenylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
Acta Crystallogr D Struct Biol ; 75(Pt 9): 782-791, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31478901

ABSTRACT

Recent developments have resulted in electron cryo-microscopy (cryo-EM) becoming a useful tool for the structure determination of biological macromolecules. For samples containing inherent flexibility, heterogeneity or preferred orientation, the collection of extensive cryo-EM data using several conditions and microscopes is often required. In such a scenario, merging cryo-EM data sets is advantageous because it allows improved three-dimensional reconstructions to be obtained. Since data sets are not always collected with the same pixel size, merging data can be challenging. Here, two methods to combine cryo-EM data are described. Both involve the calculation of a rescaling factor from independent data sets. The effects of errors in the scaling factor on the results of data merging are also estimated. The methods described here provide a guideline for cryo-EM users who wish to combine data sets from the same type of microscope and detector.


Subject(s)
Datasets as Topic , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Single Molecule Imaging/methods , Cryoelectron Microscopy/methods , Models, Molecular
4.
Curr Opin Struct Biol ; 59: 143-150, 2019 12.
Article in English | MEDLINE | ID: mdl-31499460

ABSTRACT

The polyadenosine (poly(A)) tail found on the 3'-end of almost all eukaryotic mRNAs is important for mRNA stability and regulation of translation. mRNA 3'-end processing occurs co-transcriptionally and involves more than 20 proteins to specifically recognize the polyadenylation site, cleave the pre-mRNA, add a poly(A) tail, and trigger transcription termination. The polyadenylation site (PAS) defines the end of the 3'-untranslated region (3'-UTR) and, therefore, selection of the cleavage site is a critical event in regulating gene expression. Integrated structural biology approaches including biochemical reconstitution of multi-subunit complexes, cross-linking mass spectrometry, and structural analyses by X- ray crystallography and single-particle electron cryo-microscopy (cryoEM) have enabled recent progress in understanding the molecular mechanisms of the mRNA 3'-end processing machinery. Here, we describe new molecular insights into pre-mRNA recognition, cleavage and polyadenylation.


Subject(s)
3' Untranslated Regions , RNA Processing, Post-Transcriptional , RNA, Messenger/chemistry , RNA, Messenger/genetics , Binding Sites , Eukaryota/genetics , Eukaryota/metabolism , Models, Molecular , Polyadenylation , Protein Binding , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Structure-Activity Relationship
5.
Mol Cell ; 73(6): 1217-1231.e11, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30737185

ABSTRACT

Cleavage and polyadenylation factor (CPF/CPSF) is a multi-protein complex essential for formation of eukaryotic mRNA 3' ends. CPF cleaves pre-mRNAs at a specific site and adds a poly(A) tail. The cleavage reaction defines the 3' end of the mature mRNA, and thus the activity of the endonuclease is highly regulated. Here, we show that reconstitution of specific pre-mRNA cleavage with recombinant yeast proteins requires incorporation of the Ysh1 endonuclease into an eight-subunit "CPFcore" complex. Cleavage also requires the accessory cleavage factors IA and IB, which bind substrate pre-mRNAs and CPF, likely facilitating assembly of an active complex. Using X-ray crystallography, electron microscopy, and mass spectrometry, we determine the structure of Ysh1 bound to Mpe1 and the arrangement of subunits within CPFcore. Together, our data suggest that the active mRNA 3' end processing machinery is a dynamic assembly that is licensed to cleave only when all protein factors come together at the polyadenylation site.


Subject(s)
Endonucleases/metabolism , Polyadenylation , RNA Precursors/metabolism , RNA, Fungal/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , mRNA Cleavage and Polyadenylation Factors/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Cytochromes c/genetics , Cytochromes c/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endonucleases/genetics , Enzyme Activation , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Docking Simulation , Multiprotein Complexes , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , Protein Binding , Protein Interaction Domains and Motifs , RNA Precursors/genetics , RNA, Fungal/genetics , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Tandem Mass Spectrometry , mRNA Cleavage and Polyadenylation Factors/genetics
6.
Science ; 358(6366): 1056-1059, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29074584

ABSTRACT

Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3' ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four ß propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3'-end processing.


Subject(s)
RNA 3' End Processing , RNA Polymerase II/chemistry , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , mRNA Cleavage and Polyadenylation Factors/chemistry , Cryoelectron Microscopy , Polynucleotide Adenylyltransferase/metabolism , Protein Conformation , RNA Polymerase II/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , mRNA Cleavage and Polyadenylation Factors/ultrastructure
7.
J Biochem ; 161(4): 331-337, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28013221

ABSTRACT

The flagellar motor is embedded in the cell envelope and rotates upon interaction between the stator and the rotor. The rotation is powered by ion flow through the stator. A single transmembrane protein named FliL is associated with torque generation in the flagellar motor. We established an Escherichia coli over-expression system for FliL of Vibrio alginolyticus, a marine bacterium that has a sodium-driven polar flagellum. We successfully expressed, purified, and crystallized the ca. 17 kDa full-length FliL protein and generated a construct that expresses only the ca. 14 kDa periplasmic region of FliL (ΔTM FliL). Biochemical characterization and NMR analysis revealed that ΔTM FliL weakly interacted with itself to form an oligomer. We speculate that the observed dynamic interaction may be involved in the role of FliL in flagellar motor function.


Subject(s)
Bacterial Proteins/metabolism , Cell Membrane/metabolism , Flagella/metabolism , Membrane Proteins/metabolism , Vibrio alginolyticus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallization , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Magnetic Resonance Spectroscopy , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutation , Periplasm/metabolism , Sodium/metabolism , Vibrio alginolyticus/genetics
8.
Mol Microbiol ; 98(1): 101-10, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26103585

ABSTRACT

Flagellar motors generate torque to rotate flagellar filaments and drive bacterial cells. Each motor is composed of a rotor and many stators. The stator is a force-generating complex that converts ion flux into torque. Previous reports have suggested that the membrane protein FliL is located near the stator and is involved in torque generation. We investigated the role of FliL in the sodium-driven polar flagellar motor of Vibrio alginolyticus. Our results revealed that FliL is a cytoplasmic membrane protein and is located at the base of flagellum. The deletion of fliL did not affect the cell morphology or flagellation but resulted in a significant decrease of swimming speed, especially at a higher load thus suggesting that FliL is important for torque generation at high load conditions. Furthermore, the polar localization of the stator was decreased in a ΔfliL mutant, but the sodium-dependent assembly of the stator complex was still retained. The polar localization of FliL was lost in the absence of the stator complex, indicating that FliL interacts directly or indirectly with the stator. Our results suggest that FliL is localized along with the stator in order to support the motor functioning for swimming at high load conditions by maintaining the stator assembly.


Subject(s)
Bacterial Proteins/metabolism , Flagella/metabolism , Membrane Proteins/metabolism , Sodium/metabolism , Vibrio alginolyticus/physiology , Bacterial Proteins/genetics , Membrane Proteins/genetics , Mutation , Sequence Deletion , Sodium Channels/genetics , Sodium Channels/metabolism , Torque , Vibrio alginolyticus/cytology , Vibrio alginolyticus/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...