Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.914
Filter
1.
ACS Appl Bio Mater ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836520

ABSTRACT

One of the gut-derived uremic toxins 4-ethylphenyl sulfate (4-EPS) exhibits significantly elevated plasma levels in chronic kidney diseases and autism, and its early quantification in bodily fluids is important. Therefore, the development of rapid and sensitive technologies for 4-EPS detection is of significant importance for clinical diagnosis. In the current work, the synthesis of a molecularly imprinted biopolymer (MIBP) carrying 4-EPS specific cavities only using the biopolymer polydopamine (PDA) and molybdenum disulfide (MoS2) nanosheets has been reported. The fabricated electrode was prepared using screen-printed carbon electrodes on a polyvinyl chloride substrate. The synthesized material was characterized using several techniques, and electrochemical studies were performed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The DPV technique for the electrochemical sensing of 4-EPS using the fabricated sensor (PDA@MoS2-MIBP) determined a sensitivity of 0.012 µA/ng mL/cm2 and a limit of detection of 30 ng/mL in a broad linear range of 1-2200 ng/mL. Also, the interferent study was performed to evaluate the selectivity of the fabricated sensor along with the control and stability study. Moreover, the performance of the sensor was evaluated in the spiked urine sample, and a comparison was made with the data obtained by ultraperformance liquid chromatography-tandem mass spectroscopy.

2.
Mikrochim Acta ; 191(7): 373, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38842697

ABSTRACT

The design of surface plasmon resonance (SPR) sensors has been greatly enhanced in recent years by the advancements in the production and integration of nanostructures, leading to more compact and efficient devices. There have been reports of novel SPR sensors having distinct nanostructures, either as signal amplification tags like gold nanoparticles (AuNPs) or as sensing substrate-like two-dimensional (2D) materials including graphene, transition metal dichalcogenides (TMDCs), MXene, black phosphorus (BP), metal-organic frameworks (MOFs), and antimonene. Such 2D-based SPR biosensors offer advantages over conventional sensors due to significant increases in their sensitivity with a good figure of merit and limit of detection (LOD). Due to their atomically thin structure, improved sensitivity, and sophisticated functionalization capabilities, 2D materials can open up new possibilities in the field of healthcare, particularly in point-of-care diagnostics, environmental and food monitoring, homeland security protection, clinical diagnosis and treatment, and flexible or transient bioelectronics. The present study articulates an in-depth analysis of the most recent developments in 2D material-based SPR sensor technology. Moreover, in-depth research of 2D materials, their integration with optoelectronic technology for a new sensing platform, and the predicted and experimental outcomes of various excitation approaches are highlighted, along with the principles of SPR biosensors. Furthermore, the review projects the potential prospects and future trends of these emerging materials-based SPR biosensors to advance in clinical diagnosis, healthcare biochemical, and biological applications.


Subject(s)
Surface Plasmon Resonance , Biosensing Techniques/methods , Gold/chemistry , Graphite/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Nanostructures/chemistry , Phosphorus/chemistry , Surface Plasmon Resonance/methods
3.
J Physiol Biochem ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865050

ABSTRACT

Mitochondrial functionality and its regulation are tightly controlled through a balanced crosstalk between the nuclear and mitochondrial DNA interactions. Epigenetic signatures like methylation, hydroxymethylation and miRNAs have been reported in mitochondria. In addition, epigenetic signatures encoded by nuclear DNA are also imported to mitochondria and regulate the gene expression dynamics of the mitochondrial genome. Alteration in the interplay of these epigenetic modifications results in the pathogenesis of various disorders like neurodegenerative, cardiovascular, metabolic disorders, cancer, aging and senescence. These modifications result in higher ROS production, increased mitochondrial copy number and disruption in the replication process. In addition, various miRNAs are associated with regulating and expressing important mitochondrial gene families like COX, OXPHOS, ND and DNMT. Epigenetic changes are reversible and therefore therapeutic interventions like changing the target modifications can be utilized to repair or prevent mitochondrial insufficiency by reversing the changed gene expression. Identifying these mitochondrial-specific epigenetic signatures has the potential for early diagnosis and treatment responses for many diseases caused by mitochondrial dysfunction. In the present review, different mitoepigenetic modifications have been discussed in association with the development of various diseases by focusing on alteration in gene expression and dysregulation of specific signaling pathways. However, this area is still in its infancy and future research is warranted to draw better conclusions.

4.
Am J Trop Med Hyg ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772358

ABSTRACT

The rising prevalence of drug-resistant Mycobacterium tuberculosis (MTB) strains poses a significant challenge to global tuberculosis (TB) control efforts. This study aimed to analyze drug resistance patterns and investigate the molecular characteristics of 193 MTB clinical isolates to shed light on the mechanisms of drug resistance. Of the 193 MTB clinical isolates, 28.5% (n = 53) exhibited mono-drug or multidrug resistance. Pyrazinamide mono-drug resistance (PZAr) was the most prevalent (17%, n = 33), followed by isoniazid mono-drug resistance (3.6%, n = 7). Rifampicin resistance was associated with mutations in the rpoB gene (D435Y, D435V, S450L, L452P). Isoniazid resistance mutations were found in the katG (S315T), inhA (C[-15] T), and ndh (R268H) genes, whereas ethambutol resistance mutations were observed in the embB gene (M306V, M306I, M306L, G406S, Q497R). Surprisingly, 94% of PZAr isolates (n = 31) showed no mutations in the pncA or rpsA genes. The presence of the R268H mutation in the ndh gene, not previously linked to PZAr, was detected in 15% of PZAr isolates (n = 5), suggesting its potential contribution to PZAr in specific cases but not as a predominant mechanism. The specific molecular mechanisms underlying PZAr in the majority of the isolates remain unknown, emphasizing the need for further research to uncover the contributing factors. These findings contribute to the understanding of drug resistance patterns and can guide future efforts in TB control and management.

5.
World J Pediatr Congenit Heart Surg ; : 21501351241239306, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766718

ABSTRACT

Background: Various inotropes and inodilators have been utilized to treat low cardiac output syndrome after the arterial switch operation. The use of levosimendan, a calcium sensitizer has been limited in this setting. This study compares the effects of levosimendan with milrinone in managing low cardiac output after the arterial switch operation. Methods: A retrospective, comparative study was conducted in a tertiary care hospital on patients weighing up to 3 kg undergoing the arterial switch operation between January 2017 and January 2022. Patients received a loading dose followed by continuous infusion of either levosimendan or milrinone. Echocardiographic, hemodynamic and biochemical parameters were compared. Results: Forty-three patients received levosimendan and 42 patients received milrinone as the primary test drug. Cardiac index of less than 2.2 L/min/m2 on postoperative day 1 and 2 was found in 9.3% and 2.3% of patients receiving levosimendan versus 26.2% and 11.9% in those receiving milrinone, respectively (P = .04 and .08, respectively). Early lactate-clearance and better central venous oxygen saturations were noted in the levosimendan group. Prevalence of acute kidney injury was higher in the milrinone group (50% vs 28%; P = .03). Use of peritoneal dialysis in the milrinone group versus levosimendan was 31% and 16.3%, respectively (P = .11). There was no difference in hospital mortality between the groups (milrinone, 3; levosimendan, 2, P = .62). Conclusions: Levosimendan is safe and as effective as milrinone to treat low cardiac output syndrome occurring in neonates after the arterial switch operation. In addition we found that levosimendan was renal protective when compared with milrinone.

6.
World J Hepatol ; 16(4): 517-536, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38689748

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused changes in the global health system, causing significant setbacks in healthcare systems worldwide. This pandemic has also shown resilience, flexibility, and creativity in reacting to the tragedy. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection targets most of the respiratory tract, resulting in a severe sickness called acute respiratory distress syndrome that may be fatal in some individuals. Although the lung is the primary organ targeted by COVID-19 viruses, the clinical aspect of the disease is varied and ranges from asymptomatic to respiratory failure. However, due to an unorganized immune response and several affected mechanisms, the liver may also experience liver cell injury, ischemic liver dysfunction, and drug-induced liver injury, which can result in respiratory failure because of the immune system's disordered response and other compromised processes that can end in multisystem organ failure. Patients with liver cirrhosis or those who have impaired immune systems may be more likely than other groups to experience worse results from the SARS-CoV-2 infection. We thus intend to examine the pathogenesis, current therapy, and consequences of liver damage concerning COVID-19.

7.
World J Pediatr Congenit Heart Surg ; : 21501351241237952, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706207

ABSTRACT

Chylothorax in infants after surgery for congenital heart disease is associated with significant morbidity and mortality. Numerous management modalities applied alone or in various combinations have been utilized but definitive guidelines have not yet been established. We present two infants who developed refractory chylothorax after congenital heart surgery. We also reviewed evidence for the use of available treatment modalities. In our experience, the use of lymphangiography followed by pleurodesis by povidone-iodine was safe and our impression was that it may have played a decisive role in controlling the lymph leak.

8.
Int J Food Sci ; 2024: 7127635, 2024.
Article in English | MEDLINE | ID: mdl-38690179

ABSTRACT

Gummies belong to a confectionery category characterized by a hydrocolloid, acting as a stabilizer, forming a network to retain a high-moisture sugar syrup, and hydrocolloids play a key role in shaping the visual appeal, flavour release, and texture of the gel network. This study investigates the potential substitution of gelatin in gummies with plant-based hydrocolloids like agar-agar and guar gum. It is also aimed at optimizing the level of functional ingredients like curcumin and piperine in standardized gummies through incorporation of turmeric and black pepper, respectively. These plant-based gelling agents mimic gelatin's chewable, firm, and elastic texture, catering to broader consumption and suitability for versatile use. Consumer interest in healthier diets has spurred the transition towards plant-based functional foods, leading to the replacement of gelatin gummies with plant-based alternatives. Agar-agar significantly influences gummy texture by contributing to firmness, elasticity, and stable gel formation, imparting essential strength and consistency. Guar gum, recognized as a plant-based hydrocolloid, enhances gummy texture, consistency, and moisture retention through thickening and stabilization. While agar-agar and guar gum individually fell short in achieving the desired textural attributes in the gummies, their combined use (1% agar-agar and 5.5% guar gum) yielded optimal chewiness (1,455.12 ± 1.75 N), gumminess (2251.11 ± 2.14 N), and high overall acceptability (8.96), resembling gelatin-based gummies. The optimized formulation included 40% sugar, 2% citric acid, 2% turmeric, and 0.6% black pepper. The developed vegan gummies contained 56.9 ± 0.09 mg/100 g total phenols, 37.27 ± 1.4% antioxidant capacity, 0.054 ± 0.0012% curcumin, and 0.02 ± 0.008% piperine. Consequently, the combined use of agar-agar and guar gum emerged as stable and effective gelling agents, offering an alternative to gelatin for creating turmeric and black pepper-infused gummies with desirable texture and functional attributes.

9.
Indian J Surg Oncol ; 15(2): 296-301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741648

ABSTRACT

Potency and urinary continence are adversely affected post-prostatectomy. The primary objective is oncological safety by ensuring negative surgical margins (NSM) and best functional recovery through nerve preservation in appropriate patients. NeuroSAFE technique of intra-operative frozen-section (IFS) analysis was devised for comprehensive assessment of surgical margins adjacent to the neurovascular tissue surface of the prostate. We analyzed our initial experience with this technique. Five NS-RARPs were performed utilizing the NeuroSAFE technique between October 2021 and February 2022. Patient demographics, disease stage, operative console time, post-operative complications, final histopathology, biochemical recurrence (BCR), erectile function, and urinary continence were recorded. The mean age of patients was 59.2 ± 1.3 years. All had clinically organ-confined disease with ISUP grade ≤ 3. The mean operative time of NS-RARP with NeuroSAFE was 240 ± 21 min and average NeuroSAFE time was 45 ± 3.8 min. All patients had NSM on IFS. No patient had Clavien-Dindo grade > 1 complications. Margins were negative on final histopathology. No patient had BCR at 6 and 12 weeks. Three patients were able to have sexual intercourse and only one patient required single precaution pad at 12 weeks. NeuroSAFE is feasible and can ensure intra-operative oncological safety of the NS procedure. Moreover, it gives the opportunity to convert positive surgical margin to prognostically favorable NSM by secondary resection. Our initial experience which is the first in India is encouraging with favorable functional outcomes. Large prospective studies and longer follow-up are required specially to evaluate the oncological benefit.

10.
Polymers (Basel) ; 16(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794636

ABSTRACT

The selection of process parameters is crucial in 3D printing for product manufacturing. These parameters govern the operation of production machinery and influence the mechanical properties, production time, and other aspects of the final product. The optimal process parameter settings vary depending on the product and printing application. This study identifies the most suitable cluster of process parameters for producing rotating components, specifically impellers, using carbon-reinforced Polyether Ether Ketone (CF-PEEK) thermoplastic filament. A mathematical programming technique using a rating method was employed to select the appropriate process parameters. The research concludes that an infill density of 70%, a layer height of 0.15 mm, a printing speed of 60 mm/s, a platform temperature of 195 °C, an extruder temperature of 445 °C, and an extruder travel speed of 95 mm/s are optimal process parameters for manufacturing rotating components using carbon-reinforced PEEK material.

11.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792215

ABSTRACT

Quinazolines are an important class of heterocyclic compounds that have proven their significance, especially in the field of organic synthesis and medicinal chemistry because of their wide range of biological and pharmacological properties. Thus, numerous synthetic methods have been developed for the synthesis of quinazolines and their derivatives. This review article briefly outlines the new synthetic methods for compounds containing the quinazoline scaffold employing transition metal-catalyzed reactions.

12.
Toxicol Ind Health ; : 7482337241257273, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814634

ABSTRACT

Chemical leukoderma, or chemical-based vitiligo, is a dermal disease triggered by exposure to chemicals and characterized by the emergence of depigmentation or hypopigmentation of the skin. The etiology of this condition is associated with exposure to various chemical substances present in both occupational and non-occupational settings. The precise mechanism that underlies chemical leukoderma remains elusive and is believed to result from the demise of melanocytes, which are responsible for producing skin pigments. This condition has gained particular prominence in developing countries like India. An interesting connection between chemical leukoderma and vitiligo has been identified; studies suggest that exposure to many household chemicals, which are derivatives of phenols and catechol, may serve as a primary etiological factor for the condition. Similar to autoimmune diseases, its pathogenesis involves contributions from both genetic and environmental factors. Furthermore, over the last few decades, various studies have demonstrated that exposure to chemicals plays a crucial role in initiating and progressing chemical leukoderma, including cases stemming from occupational exposure.

13.
ACS Chem Neurosci ; 15(11): 2334-2349, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38747411

ABSTRACT

Parkinson's disease (PD) is a significant health issue because it gradually damages the nervous system. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors play a significant role in the development of PD. The current investigation employed hybrid benzodioxole-propanamide (BDZ-P) compounds to get information on AMPA receptors, analyze their biochemical and biophysical properties, and assess their neuroprotective effects. Examining the biophysical characteristics of all the subunits of the AMPA receptor offers insights into the impact of BDZ-P on the desensitization and deactivation rate. It demonstrates a partial improvement in the locomotor capacities in a mouse model of Parkinson's disease. In addition, the in vivo experiment assessed the locomotor activity by utilizing the open-field test. Our findings demonstrated that BDZ-P7 stands out with its remarkable potency, inhibiting the GluA2 subunit nearly 8-fold with an IC50 of 3.03 µM, GluA1/2 by 7.5-fold with an IC50 of 3.14 µM, GluA2/3 by nearly 7-fold with an IC50 of 3.19 µM, and GluA1 by 6.5-fold with an IC50 of 3.2 µM, significantly impacting the desensitization and deactivation rate of the AMPA receptor. BDZ-P7 showed an in vivo impact of partially reinstating locomotor abilities in a mouse model of PD. The results above suggest that the BDZ-P7 compounds show great promise as top contenders for the development of novel neuroprotective therapies.


Subject(s)
Neuroprotective Agents , Receptors, AMPA , Receptors, AMPA/metabolism , Receptors, AMPA/drug effects , Animals , Neuroprotective Agents/pharmacology , Mice , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Mice, Inbred C57BL , Male , Humans , Disease Models, Animal
14.
Plant Physiol Biochem ; 211: 108613, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696868

ABSTRACT

Ionic and metal toxicity in plants is still a global problem for the environment, agricultural productivity and ultimately poses human health threats when these metal ions accumulate in edible organs of plants. Metal and ion transport from cytosol to the vacuole is considered an important component of metal and ion tolerance and a plant's potential utility in phytoremediation. Finger millet (Eleusine coracana) is an orphan crop but has prominent nutritional value in comparison to other cereals. Previous transcriptomic studies suggested that one of the calcium/proton exchanger (EcCAX3) is strongly upregulated during different developmental stages of spikes development in plant. This finding led us to speculate that high calcium accumulation in the grain might be because of CAX3 function. Moreover, phylogenetic analysis shows that EcCAX3 is more closely related to foxtail millet, sorghum and rice CAX3 protein. To decipher the functional role of EcCAX3, we have adopted complementation of yeast triple mutant K677 (Δpmc1Δvcx1Δcnb1), which has defective calcium transport machinery. Furthermore, metal tolerance assay shows that EcCAX3 expression conferred tolerance to different metal stresses in yeast. The gain-of-function study suggests that EcCAX3 overexpressing Arabidopsis plants shows better tolerance to higher concentration of different metal ions as compared to wild type Col-0 plants. EcCAX3-overexpression transgenic lines exhibits abundance of metal transporters and cation exchanger transporter transcripts under metal stress conditions. Furthermore, EcCAX3-overexpression lines have higher accumulation of macro- and micro-elements under different metal stress. Overall, this finding highlights the functional role of EcCAX3 in the regulation of metal and ion homeostasis and this could be potentially utilized to engineer metal fortification and generation of stress tolerant crops in near future.


Subject(s)
Arabidopsis , Eleusine , Plants, Genetically Modified , Stress, Physiological , Eleusine/genetics , Eleusine/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/drug effects , Phylogeny , Antiporters/metabolism , Antiporters/genetics , Metals/metabolism , Calcium/metabolism , Cation Transport Proteins , Arabidopsis Proteins
15.
Heliyon ; 10(9): e29994, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707321

ABSTRACT

In industrial landscapes, spool fabrication industries play a crucial role in the successful completion of numerous industrial projects by providing prefabricated modules. However, the implementation of digitalized sustainable practices in spool fabrication industries is progressing slowly and is still in its embryonic stage due to several challenges. To implement digitalized sustainable manufacturing (SM), digital technologies such as Internet of Things, Cloud computing, Big data analytics, Cyber-physical systems, Augmented reality, Virtual reality, and Machine learning are required in the context of sustainability. The scope of the present study entails prioritization of the enablers that promote the implementation of digitalized sustainable practices in spool fabrication industries using the Improved Fuzzy Stepwise Weight Assessment Ratio Analysis (IMF-SWARA) method integrated with Triangular Fuzzy Bonferroni Mean (TFBM). The enablers are identified through a systematic literature review and are validated by a team of seven experts through a questionnaire survey. Then the finally identified enablers are analyzed by the IMF-SWARA and TFBM integrated approach. The results indicate that the most significant enablers are management support, leadership, governmental policies and regulations to implement digitalized SM. The study provides a comprehensive analysis of digital SM enablers in the spool fabrication industry and offers guidelines for the transformation of conventional systems into digitalized SM practices.

16.
J Fluoresc ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739317

ABSTRACT

In this work, we focused on extracting the anthocyanin dye in acetone, butanol, ethanol, and water solvents from Delonix regia flowers by a simple maceration extraction process. The identification of functional group analysis, vibrational studies, energy transfer mechanisms, optoelectronic properties, photostability studies, FRET-assisted potential light emissions and photometric properties of the anthocyanin dyes are successively investigated. FTIR spectroscopy and vibrational studies have confirmed the existence of polyphenolic groups in 2-phenyl chromenylium (anthocyanin) dyes. The optoelectronic results show the least direct bandgap (2.04 eV), indirect bandgap (1.55 eV), Urbach energy (0.380 eV), high refractive index (1.20), dielectric constant (2.794), and high optical conductivity (1.954 × 103 S/m) for the anthocyanin dye extracted found in water solvent. The photoluminescence properties such as Stoke's shift, high quantum yield, and lifetime results show that anthocyanin dyes are promising candidates for red-LEDs and optical materials. The absorption and emission spectra of the anthocyanin dyes follow the mirror image rule and the Franck-Condon factor exists between vibrational energy levels corresponding to all the electronic transitions. The excellent correspondence between the absorption and emission spectra reinforces that the anthocyanins are efficient (46%) FRET probes. Further, photometric properties such as CIE, CRI, CCT and colour purity results of anthocyanins in all studied solvents revealed that this material exhibits orange to red shades (x = 0.48 → 0.54 and y = 0.36 →0.45) and is well suitable for have great potential in the manufacturing of Organic-LEDs and other optoelectronic device applications.

17.
Neuropharmacology ; 251: 109931, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38570067

ABSTRACT

The prospective involvement of the Wnt/ß-catenin signaling pathway in epilepsy, with the proposed therapeutic uses of its modulators, has been suggested; however, comprehensive knowledge in this regard is currently limited. Despite postulations about the pathway's significance and treatment potential, a systematic investigation is required to better understand its implications in chronic epilepsy. We investigated the role of key proteins like ß-catenin, GSK-3ß, and their modulators sulindac and 6-BIO, in Wnt/ß-catenin pathway during chronic phase of temporal lobe epilepsy. We also evaluated the role of modulators in seizure score, seizure frequency and neurobehavioral parameters in temporal lobe epilepsy. We developed status epilepticus model using lithium-pilocarpine. The assessment of neurobehavioral parameters was done followed by histopathological examination and immunohistochemistry staining of hippocampus as well as RT-qPCR and western blotting to analyse gene and protein expression. In SE rats, seizure score and frequency were significantly high compared to control rats, with notable changes in neurobehavioral parameters and neuronal damage observed in hippocampus. Our study also revealed a substantial upregulation of the Wnt/ß-catenin pathway in chronic epilepsy, as evidenced by gene and protein expression studies. Sulindac emerged as a potent modulator, reducing seizure score, frequency, neuronal damage, apoptosis, and downregulating the Wnt/ß-catenin pathway when compared to 6-BIO. Our findings emphasize the potential of GSK-3ß and ß-catenin as promising drug targets for chronic temporal lobe epilepsy, offering valuable treatment options for chronic epilepsy. The promising outcomes with sulindac encourages further exploration in clinical trials to assess its therapeutic potential.


Subject(s)
Epilepsy, Temporal Lobe , Status Epilepticus , Rats , Animals , Wnt Signaling Pathway , Sulindac/pharmacology , Sulindac/therapeutic use , beta Catenin/metabolism , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/pathology , Glycogen Synthase Kinase 3 beta/metabolism , Prospective Studies
18.
Heliyon ; 10(8): e29564, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38665579

ABSTRACT

The contemporary agricultural supply chain necessitates the integration of information and communication technologies to effectively mitigate the multifaceted challenges posed by climate change and rising global demand for food products. Furthermore, recent developments in information and communication technologies, such as blockchain, big data analytics, the internet of things, artificial intelligence, cloud computing, etc., have made this transformation possible. Each of these technologies plays a particular role in enabling the agriculture supply chain ecosystem to be intelligent enough to handle today's world's challenges. Thus, this paper reviews the crucial information and communication technologies-enabled agriculture supply chains to understand their potential uses and contemporary developments. The review is supported by 57 research papers from the Scopus database. Five research areas analyze the applications of the technology reviewed in the agriculture supply chain: food safety and traceability, security and information system management, wasting food, supervision and tracking, agricultural businesses and decision-making, and other applications not explicitly related to the agriculture supply chain. The study also emphasizes how information and communication technologies can help agriculture supply chains and promote agriculture supply chain decarbonization. An information and communication technologies application framework for a decarbonized agriculture supply chain is suggested based on the research's findings. The framework identifies the contribution of information and communication technologies to decision-making in agriculture supply chains. The review also offers guidelines to academics, policymakers, and practitioners on managing agriculture supply chains successfully for enhanced agricultural productivity and decarbonization.

19.
Gene ; 916: 148439, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38583819

ABSTRACT

The scarcity of soil nutrient availability under cold conditions of Himalayan regions needs a sustainable approach for better crop yields. The cold-adapted bacteria, Exiguobacterium sibiricum K1, with the potential to produce several plant growth-promoting (PGP) attributes, nitrogen fixation, indole acetic acid production, phosphate and potassium solubilization at 10 °C can provide an opportunity to promote crop yield improvement in an eco-friendly way under cold conditions. The bacterium also exhibited biocontrol activity against two phytopathogens and produced siderophore (53.0 ± 0.5 % psu). The strain's PGP properties were investigated using a spinach-based bioassay under controlled conditions. The bacterized seeds showed a notable increase in germination rate (23.2 %), shoot length (65.3 %), root length (56.6 %), leaf area (73.7 %), number of leaflets (65.2 %), and dry matter (65.2 %). Additionally, the leaf analysis indicated elevated chlorophyll pigments, i.e., chlorophyll a (55.5 %), chlorophyll b (42.8 %), carotenoids (35.2 %), percentage radical scavenging activity (47.4 %), and leaf nutrient uptake such as nitrogen (23.4 %), calcium (60.8 %), potassium (62.3 %), and magnesium (28.9 %). Moreover, the whole-genome sequencing and genome mining endorsed various biofertilisation-related genes, including genes for potassium and phosphate solubilization, iron and nitrogen acquisition, carbon dioxide fixation, and biocontrol ability of Exiguobacterium sibiricum K1. Overall, this study highlights the role of Exiguobacterium sibiricum K1 as a potential bioinoculant for improving crop yield under cold environments.


Subject(s)
Cold Temperature , Nitrogen Fixation , Spinacia oleracea/microbiology , Spinacia oleracea/genetics , Germination , Chlorophyll/metabolism , Siderophores/metabolism , Plant Leaves/genetics , Indoleacetic Acids/metabolism , Genome, Bacterial , Phosphates/metabolism , Plant Development/genetics , Bacillales/genetics , Bacillales/metabolism , Biological Control Agents
20.
BMJ Case Rep ; 17(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649242

ABSTRACT

We present a case of a fit man in his 50s, with simultaneous bilateral quadriceps tendon repair of injuries sustained 6 years apart. Spontaneous closed ruptures of the quadriceps tendon are uncommon. Clinical data of a single case of bilateral quadriceps tendon injury with simultaneous repair was gathered via the patient, notes and surgeon. Diagnosis was primarily based on history and clinical examination. Suggestive features on the plain radiographic imaging were also present. Confirmation was attempted using ultrasonography but yielded conflicting reports. The patient was screened for any associated predisposing conditions that would preclude surgical intervention or increase risk of recurrence. Repairs were accomplished by employing a combination of suture anchors and transpatellar cerclage reinforcement. Apposition of the tendon to the superior patellar pole was successful although with decreased passive flexion on the neglected side (approximately 30°) compared with the acute (approximately 90°). Follow-up continues with postoperative rehabilitation.


Subject(s)
Quadriceps Muscle , Tendon Injuries , Humans , Male , Tendon Injuries/surgery , Tendon Injuries/diagnostic imaging , Tendon Injuries/diagnosis , Quadriceps Muscle/injuries , Quadriceps Muscle/surgery , Quadriceps Muscle/diagnostic imaging , Middle Aged , Rupture/surgery , Suture Anchors , Knee Injuries/surgery , Knee Injuries/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...