Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 75: 103235, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38889622

ABSTRACT

Myofibroblasts are key cellular effectors of corneal wound healing from trauma, surgery, or infection. However, their persistent deposition of disorganized extracellular matrix can also cause corneal fibrosis and visual impairment. Recent work showed that the PPARγ agonist Troglitazone can mitigate established corneal fibrosis, and parallel in vitro data suggested this occurred through inhibition of the mitochondrial pyruvate carrier (MPC) rather than PPARγ. In addition to oxidative phosphorylation (Ox-Phos), pyruvate and other mitochondrial metabolites provide carbon for the synthesis of biological macromolecules. However, it is currently unclear how these roles selectively impact fibrosis. Here, we performed bioenergetic, metabolomic, and epigenetic analyses of corneal fibroblasts treated with TGF-ß1 to stimulate myofibroblast trans-differentiation, with further addition of Troglitazone or the MPC inhibitor UK5099, to identify MPC-dependencies that may facilitate remodeling and loss of the myofibroblast phenotype. Our results show that a shift in energy metabolism is associated with, but not sufficient to drive cellular remodeling. Metabolites whose abundances were sensitive to MPC inhibition suggest that sustained carbon influx into the Krebs' cycle is prioritized over proline synthesis to fuel collagen deposition. Furthermore, increased abundance of acetyl-CoA and increased histone H3 acetylation suggest that epigenetic mechanisms downstream of metabolic remodeling may reinforce cellular phenotypes. Overall, our results highlight a novel molecular target and metabolic vulnerability that affects myofibroblast persistence in the context of corneal wounding.

2.
J Am Heart Assoc ; 13(2): e031247, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38226518

ABSTRACT

Most research using digital technologies builds on existing methods for staff-administered evaluation, requiring a large investment of time, effort, and resources. Widespread use of personal mobile devices provides opportunities for continuous health monitoring without active participant engagement. Home-based sensors show promise in evaluating behavioral features in near real time. Digital technologies across these methodologies can detect precise measures of cognition, mood, sleep, gait, speech, motor activity, behavior patterns, and additional features relevant to health. As a neurodegenerative condition with insidious onset, Alzheimer disease and other dementias (AD/D) represent a key target for advances in monitoring disease symptoms. Studies to date evaluating the predictive power of digital measures use inconsistent approaches to characterize these measures. Comparison between different digital collection methods supports the use of passive collection methods in settings in which active participant engagement approaches are not feasible. Additional studies that analyze how digital measures across multiple data streams can together improve prediction of cognitive impairment and early-stage AD are needed. Given the long timeline of progression from normal to diagnosis, digital monitoring will more easily make extended longitudinal follow-up possible. Through the American Heart Association-funded Strategically Focused Research Network, the Boston University investigative team deployed a platform involving a wide range of technologies to address these gaps in research practice. Much more research is needed to thoroughly evaluate limitations of passive monitoring. Multidisciplinary collaborations are needed to establish legal and ethical frameworks for ensuring passive monitoring can be conducted at scale while protecting privacy and security, especially in vulnerable populations.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/therapy , Cognition , Boston
3.
Invest Ophthalmol Vis Sci ; 64(13): 36, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37870848

ABSTRACT

Purpose: The purpose of this study was to critically test the hypothesis that mitochondrial pyruvate carrier (MPC) function is essential for maintenance of the corneal myofibroblast phenotype in vitro and in vivo. Methods: Protein and mRNA for canonical profibrotic markers were assessed in cultured cat corneal myofibroblasts generated via transforming growth factor (TGF)-ß1 stimulation and treated with either the thiazolidinedione (TZD) troglitazone or the MPC inhibitor alpha-cyano-beta-(1-phenylindol-3-yl) acrylate (UK-5099). RNA sequencing was used to gain insight into signaling modules related to instructive, permissive, or corollary changes in gene expression following treatment. A feline photorefractive keratectomy (PRK) model of corneal wounding was used to test the efficacy of topical troglitazone at reducing α-smooth muscle actin (SMA)-positive staining when applied 2 to 4 weeks postoperatively, during peak fibrosis. Results: Troglitazone caused cultured myofibroblasts to adopt a fibroblast-like phenotype through a noncanonical, peroxisome proliferator-activated receptor (PPAR)-γ-independent mechanism. Direct MPC inhibition using UK-5099 recapitulated this effect, but classic inhibitors of oxidative phosphorylation (OXPHOS) did not. Gene Set Enrichment Analysis (GSEA) of RNA sequencing data converged on energy substrate utilization and the Mitochondrial Permeability Transition pore as key players in myofibroblast maintenance. Finally, troglitazone applied onto an established zone of active fibrosis post-PRK significantly reduced stromal α-SMA expression. Conclusions: Our results provide empirical evidence that metabolic remodeling in myofibroblasts creates selective vulnerabilities beyond simply mitochondrial energy production, and that these are critical for maintenance of the myofibroblast phenotype. For the first time, we provide proof-of-concept data showing that this remodeling can be exploited to treat existing corneal fibrosis via inhibition of the MPC.


Subject(s)
Fibroblasts , Myofibroblasts , Animals , Cats , Myofibroblasts/pathology , Troglitazone/pharmacology , Fibroblasts/metabolism , Transforming Growth Factor beta1/metabolism , Fibrosis , PPAR gamma/genetics , PPAR gamma/metabolism , Phenotype , Pyruvates/metabolism , Actins/metabolism , Cells, Cultured
4.
Invest Ophthalmol Vis Sci ; 63(4): 2, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35377925

ABSTRACT

Purpose: Fibrosis caused by corneal wounding can lead to scar formation, impairing vision. Although preventing fibroblast-to-myofibroblast differentiation has therapeutic potential, effective mechanisms for doing so remain elusive. Recent work shows that mitochondria contribute to differentiation in several tissues. Here, we tested the hypothesis that mitochondrial dynamics, and specifically fission, are key for transforming growth factor (TGF)-ß1-induced corneal myofibroblast differentiation. Methods: Mitochondrial fission was inhibited pharmacologically in cultured primary cat corneal fibroblasts. We measured its impact on molecular markers of myofibroblast differentiation and assessed changes in mitochondrial morphology through fluorescence imaging. The phosphorylation status of established regulatory proteins, both of myofibroblast differentiation and mitochondrial fission, was assessed by Western analysis. Results: Pharmacological inhibition of mitochondrial fission suppressed TGF-ß1-induced increases in alpha-smooth muscle actin, collagen 1, and fibronectin expression, and prevented phosphorylation of c-Jun N-terminal kinase (JNK), but not small mothers against decapentaplegic 3, p38 mitogen-activated protein kinase (p38), extracellular signal-regulated kinase 1 (ERK1), or protein kinase B (AKT). TGF-ß1 increased phosphorylation of dynamin-related protein 1 (DRP1), a mitochondrial fission regulator, and caused fragmentation of the mitochondrial network. Although inhibition of JNK, ERK1, or AKT prevented phosphorylation of DRP1, none sufficed to independently suppress TGF-ß1-induced fragmentation. Conclusions: Mitochondrial dynamics play a key role in early corneal fibrogenesis, acting together with profibrotic signaling. This is consistent with mitochondria's role as signaling hubs that coordinate metabolic decision-making. This suggests a feed-forward cascade through which mitochondria, at least in part through fission, reinforce noncanonical TGF-ß1 signaling to attain corneal myofibroblast differentiation.


Subject(s)
Mitochondrial Dynamics , Myofibroblasts , Cells, Cultured , Fibroblasts/metabolism , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...