Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 57(11): 1929-1946, 2023 06.
Article in English | MEDLINE | ID: mdl-37070156

ABSTRACT

Networks of neurons are the primary substrate of information processing. Conversely, blood vessels in the brain are generally viewed to have physiological functions unrelated to information processing, such as the timely supply of oxygen, and other nutrients to the neural tissue. However, recent studies have shown that cerebral microvessels, like neurons, exhibit tuned responses to sensory stimuli. Tuned neural responses to sensory stimuli may be enhanced with experience-dependent Hebbian plasticity and other forms of learning. Hence, it is possible that the microvascular network might also be subject to some form of competitive learning rules during early postnatal development such that its fine-scale structure becomes optimized for metabolic delivery to a given neural micro-architecture. To explore the possibility of adaptive lateral interactions and tuned responses in cerebral microvessels, we modelled the cortical neurovascular network by interconnecting two laterally connected self-organizing networks. The afferent and lateral connections of the neural and vascular networks were defined by trainable weights. By varying the topology of lateral connectivity in the vascular network layer, we observed that the partial correspondence of feature selectivity between neural and hemodynamic responses could be explained by lateral coupling across local blood vessels such that the central domain receives an excitatory drive of more blood flow and a distal surrounding region where blood flow is reduced. Critically, our simulations suggest a new role for feedback from the vascular to the neural network because the radius of vascular perfusion determines whether the cortical neural map develops into a clustered vs. salt-and-pepper organization.


Subject(s)
Nerve Net , Neurons , Nerve Net/physiology , Neurons/physiology , Hemodynamics , Neural Networks, Computer , Brain , Models, Neurological
2.
Front Neurosci ; 16: 917196, 2022.
Article in English | MEDLINE | ID: mdl-35860300

ABSTRACT

Normal functioning of the brain relies on a continual and efficient delivery of energy by a vast network of cerebral blood vessels. The bidirectional coupling between neurons and blood vessels consists of vasodilatory energy demand signals from neurons to blood vessels, and the retrograde flow of energy substrates from the vessels to neurons, which fuel neural firing, growth and other housekeeping activities in the neurons. Recent works indicate that, in addition to the functional coupling observed in the adult brain, the interdependence between the neural and vascular networks begins at the embryonic stage, and continues into subsequent developmental stages. The proposed Vascular Arborization Model (VAM) captures the effect of neural cytoarchitecture and neural activity on vascular arborization. The VAM describes three important stages of vascular tree growth: (i) The prenatal growth phase, where the vascular arborization depends on the cytoarchitecture of neurons and non-neural cells, (ii) the post-natal growth phase during which the further arborization of the vasculature depends on neural activity in addition to neural cytoarchitecture, and (iii) the settling phase, where the fully grown vascular tree repositions its vascular branch points or nodes to ensure minimum path length and wire length. The vasculature growth depicted by VAM captures structural characteristics like vascular volume density, radii, mean distance to proximal neurons in the cortex. VAM-grown vasculature agrees with the experimental observation that the neural densities do not covary with the vascular density along the depth of the cortex but predicts a high correlation between neural areal density and microvascular density when compared over a global scale (across animals and regions). To explore the influence of neural activity on vascular arborization, the VAM was used to grow the vasculature in neonatal rat whisker barrel cortex under two conditions: (i) Control, where the whiskers were intact and (ii) Lesioned, where one row of whiskers was cauterized. The model captures a significant reduction in vascular branch density in lesioned animals compared to control animals, concurring with experimental observation.

4.
Sci Rep ; 11(1): 13808, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34226588

ABSTRACT

Artificial feedforward neural networks perform a wide variety of classification and function approximation tasks with high accuracy. Unlike their artificial counterparts, biological neural networks require a supply of adequate energy delivered to single neurons by a network of cerebral microvessels. Since energy is a limited resource, a natural question is whether the cerebrovascular network is capable of ensuring maximum performance of the neural network while consuming minimum energy? Should the cerebrovascular network also be trained, along with the neural network, to achieve such an optimum? In order to answer the above questions in a simplified modeling setting, we constructed an Artificial Neurovascular Network (ANVN) comprising a multilayered perceptron (MLP) connected to a vascular tree structure. The root node of the vascular tree structure is connected to an energy source, and the terminal nodes of the vascular tree supply energy to the hidden neurons of the MLP. The energy delivered by the terminal vascular nodes to the hidden neurons determines the biases of the hidden neurons. The "weights" on the branches of the vascular tree depict the energy distribution from the parent node to the child nodes. The vascular weights are updated by a kind of "backpropagation" of the energy demand error generated by the hidden neurons. We observed that higher performance was achieved at lower energy levels when the vascular network was also trained along with the neural network. This indicates that the vascular network needs to be trained to ensure efficient neural performance. We observed that below a certain network size, the energetic dynamics of the network in the per capita energy consumption vs. classification accuracy space approaches a fixed-point attractor for various initial conditions. Once the number of hidden neurons increases beyond a threshold, the fixed point appears to vanish, giving place to a line of attractors. The model also showed that when there is a limited resource, the energy consumption of neurons is strongly correlated to their individual contribution to the network's performance.

5.
Front Comput Neurosci ; 15: 638700, 2021.
Article in English | MEDLINE | ID: mdl-34211384

ABSTRACT

Neurovascular coupling is typically considered as a master-slave relationship between the neurons and the cerebral vessels: the neurons demand energy which the vessels supply in the form of glucose and oxygen. In the recent past, both theoretical and experimental studies have suggested that the neurovascular coupling is a bidirectional system, a loop that includes a feedback signal from the vessels influencing neural firing and plasticity. An integrated model of bidirectionally connected neural network and the vascular network is hence required to understand the relationship between the informational and metabolic aspects of neural dynamics. In this study, we present a computational model of the bidirectional neurovascular system in the whisker barrel cortex and study the effect of such coupling on neural activity and plasticity as manifest in the whisker barrel map formation. In this model, a biologically plausible self-organizing network model of rate coded, dynamic neurons is nourished by a network of vessels modeled using the biophysical properties of blood vessels. The neural layer which is designed to simulate the whisker barrel cortex of rat transmits vasodilatory signals to the vessels. The feedback from the vessels is in the form of available oxygen for oxidative metabolism whose end result is the adenosine triphosphate (ATP) necessary to fuel neural firing. The model captures the effect of the feedback from the vascular network on the neuronal map formation in the whisker barrel model under normal and pathological (Hypoxia and Hypoxia-Ischemia) conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...