Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomicro Lett ; 16(1): 238, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976105

ABSTRACT

The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices, opening numerous opportunities across countless domains, including personalized healthcare and advanced robotics. Leveraging 3D integration, edge devices can achieve unprecedented miniaturization while simultaneously boosting processing power and minimizing energy consumption. Here, we demonstrate a back-end-of-line compatible optoelectronic synapse with a transfer learning method on health care applications, including electroencephalogram (EEG)-based seizure prediction, electromyography (EMG)-based gesture recognition, and electrocardiogram (ECG)-based arrhythmia detection. With experiments on three biomedical datasets, we observe the classification accuracy improvement for the pretrained model with 2.93% on EEG, 4.90% on ECG, and 7.92% on EMG, respectively. The optical programming property of the device enables an ultra-low power (2.8 × 10-13 J) fine-tuning process and offers solutions for patient-specific issues in edge computing scenarios. Moreover, the device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions, making it promising for neuromorphic vision application. To display the benefits of these intricate synaptic properties, a 5 × 5 optoelectronic synapse array is developed, effectively simulating human visual perception and memory functions. The proposed flexible optoelectronic synapse holds immense potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications.

2.
Mater Horiz ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787745

ABSTRACT

The charge-trapping mechanism in conjugated polymers is a performance obstacle in many optoelectronic devices harnessed for non-volatile memory applications. Herein, a carbonyl-decorated organic 2D-polymer (TpDb)-based charge-trapping memory device has been developed with a wide memory window (3.2 V) with low programming and erasing voltages of +3/-2 and -3/+2. The TpDb was synthesized by a potentially scalable solid-state aldol condensation reaction. The inherent structural defects and the semi-conjugated nature of the enone network in TpDb offer effective charge-trapping through the localization of charges in specific functional groups (CO). The interlayer hydrogen bonding enhances the packing density of the 2D-polymer layers thereby improving the memory storage properties of the material. Furthermore, the TpDb exhibits excellent features for non-volatile memory applications including over 10 000 cycles of write/read endurance and a prolonged retention performance of 104 seconds at high temperatures (100 °C).

3.
Sci Rep ; 13(1): 18845, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914717

ABSTRACT

There is a growing interest in new semiconductor nanostructures for future high-density high-performance flexible electronic devices. Two-dimensional conjugated microporous polymers (2D-CMPs) are promising candidates because of their inherent optoelectronic properties. Here, we are reporting a novel donor-acceptor type 2D-CMP based on Pyrene and Isoindigo (PI) for a potential nano-scale charge-trapping memory application. We exfoliated the PI polymer into ~ 2.5 nm thick nanoparticles (NPs) and fabricated a Metal-Insulator-Semiconductor (MIS) device with PI-NPs embedded in the insulator. Conductive AFM (cAFM) is used to examine the confinement mechanism as well as the local charge injection process, where ultrathin high-κ alumina supplied the energy barrier for confining the charge carrier transport. We have achieved a reproducible on-and-off state and a wide memory window (ΔV) of 1.5 V at a relatively small reading current. The device displays a low operation voltage (V < 1 V), with good retention (104 s), and endurance (103 cycles). Furthermore, a theoretical analysis is developed to affirm the measured charge carriers' transport and entrapment mechanisms through and within the fabricated MIS structures. The PI-NPs act as a nanoscale floating gate in the MIS-based memory with deep trapping sites for the charged carriers. Moreover, our results demonstrate that the synthesized 2D-CMP can be promising for future low-power high-density memory applications.

4.
Adv Mater ; 35(28): e2300446, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37192130

ABSTRACT

Being renowned for operating with visible-light pulses and electrical signals, optoelectronic memristive synaptic devices have excellent potential for neuromorphic computing systems and artificial visual information processing. Here, a flexible back-end-of-line-compatible optoelectronic memristor based on a solution-processable black phosphorus/HfOx bilayer with excellent synaptic features, toward biomimetic retinas is presented. The device shows highly stable synaptic features such as long-term potentiation (LTP) and long-term depression (LTD) for repetitive 1000 epochs, having 400 conductance pulses, each. The device presents advanced synaptic features in terms of long-term memory (LTM)/short term memory (STM), as well as learning-forgetting-relearning when visible light is induced on it. These advanced synaptic features can improve the information processing abilities for neuromorphic applications. Interestingly, the STM can be converted into LTM by adjusting the intensity of light and illumination time. Using the light-induced characteristics of the device, a 6 × 6 synaptic array is developed to exhibit possible use in artificial visual perception. Moreover, the devices are flexed using a silicon back-etching process. The resulting flexible devices demonstrate stable synaptic features when bent down to 1 cm radius. These multifunctional features in a single memristive cell make it highly suitable for optoelectronic memory storage, neuromorphic computing, and artificial visual perception applications.


Subject(s)
Light , Visual Perception , Cognition , Phosphorus , Synapses
5.
Light Sci Appl ; 12(1): 109, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147334

ABSTRACT

Optoelectronic devices are advantageous in in-memory light sensing for visual information processing, recognition, and storage in an energy-efficient manner. Recently, in-memory light sensors have been proposed to improve the energy, area, and time efficiencies of neuromorphic computing systems. This study is primarily focused on the development of a single sensing-storage-processing node based on a two-terminal solution-processable MoS2 metal-oxide-semiconductor (MOS) charge-trapping memory structure-the basic structure for charge-coupled devices (CCD)-and showing its suitability for in-memory light sensing and artificial visual perception. The memory window of the device increased from 2.8 V to more than 6 V when the device was irradiated with optical lights of different wavelengths during the program operation. Furthermore, the charge retention capability of the device at a high temperature (100 °C) was enhanced from 36 to 64% when exposed to a light wavelength of 400 nm. The larger shift in the threshold voltage with an increasing operating voltage confirmed that more charges were trapped at the Al2O3/MoS2 interface and in the MoS2 layer. A small convolutional neural network was proposed to measure the optical sensing and electrical programming abilities of the device. The array simulation received optical images transmitted using a blue light wavelength and performed inference computation to process and recognize the images with 91% accuracy. This study is a significant step toward the development of optoelectronic MOS memory devices for neuromorphic visual perception, adaptive parallel processing networks for in-memory light sensing, and smart CCD cameras with artificial visual perception capabilities.

6.
Nanotechnology ; 29(12): 125202, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29350624

ABSTRACT

In this work, the transparent bipolar resistive switching characteristics of a SiCN-based ITO/SiCN/AZO structure due to In diffusion from ITO is studied. The SiCN based device is found to be 80% transparent in the visible wavelength region. This device, with AZO as both top and bottom electrodes, does not show any RRAM property due to deposition of the high quality O2-free SiCN film. Replacing the AZO top electrode with ITO in this device results in good resistive switching (RS) characteristics with a high on/off ratio and long retention. Replacing the SiCN film with ZrO2 also results in excellent RS characteristics due to the formation of an oxygen vacancies filament inside the ZrO2 film. A resistance ratio of on/off is found to be higher in the SiCN based device compared to that of the ZrO2 device. Diffusion of In from ITO into the SiCN film on application of high positive voltage during forming can be attributed to the occurrence of RS in the device, which is confirmed by the analyses of energy dispersive spectroscopy and secondary-ion mass spectrometry. This study shows a pathway for the fabrication of CBRAM based transparent devices for non-volatile memory application.

SELECTION OF CITATIONS
SEARCH DETAIL
...