Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biotechnol Appl Biochem ; 69(2): 714-725, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33751641

ABSTRACT

Overuse of antibiotics has led to the development of multidrug-resistant strains. Antibiotic resistance is a major drawback in the biomedical field since medical implants are prone to infection by biofilms of antibiotic resistant strains of bacteria. With increasing prevalence of antibiotic-resistant pathogenic bacteria, the search for alternative method is utmost importance. In this regard, magnetic nanoparticles are commonly used as a substitute for antibiotics that can circumvent the problem of biofilms growth on the surface of biomedical implants. Iron oxide nanoparticles (IONPs) have unique magnetic properties that can be exploited in various ways in the biomedical applications. IONPs are engineered employing different methods to induce surface functionalization that include the use of polyethyleneimine and oleic acid. IONPs have a mechanical effect on biofilms in presence of an external magnet. In this review, a detailed description of surface-engineered magnetic nanoparticles as ideal antibacterial agents is provided, accompanied by various methods of literature review.


Subject(s)
Biofilms , Nanoparticles , Anti-Bacterial Agents/pharmacology , Magnetic Iron Oxide Nanoparticles
2.
Heliyon ; 7(5): e07021, 2021 May.
Article in English | MEDLINE | ID: mdl-34036196

ABSTRACT

Nosocomial pathogens cause various health problems in human and many novel drugs are under investigation to combat the pathogens. The present study explains the naturally derived hydroquinone possible mode of action against Pseudomonas aeruginosa MTCC 741 and Staphylococcus aureus MTCC 740. Time kill studies, cell viability assays, membrane potential assays, and potassium release assays were carried out to study the mode of action. Time kill studies revealed the rapid death of bacterial pathogens exposed to 4X MIC (Minimum inhibitory concentration) of the hydroquinone. Cell viability assay results showed that nearly half of the cell destruction of test pathogens occurred within one hour. Transmission electron microscopic (TEM) observations revealed the disruption of the cell membrane, which caused severe ultrastructural changes in both test pathogens. Hydroquinone dissipated the membrane potential of test pathogens, as confirmed by the depolarization of membrane potential, increases in permeability and leakage of intracellular potassium ions. At the concentration of 2X MIC hydroquinone in 5 min, about 91.41% and 84.85% potassium ions were released from P. aeruginosa MTCC 741 and S. aureus MTCC 740, respectively. This is the first report on the mode of action of naturally derived hydroquinone against clinical pathogens.

3.
Toxicol Res ; 32(2): 95-102, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27123159

ABSTRACT

In the recent years, noble nanoparticles have attracted and emerged in the field of biology, medicine and electronics due to their incredible applications. There were several methods have been used for synthesis of nanoparticles such as toxic chemicals and high energy physical procedures. To overcome these, biological method has been used for the synthesis of various metal nanoparticles. Among the nanoparticles, silver nanoparticles (AgNPs) have received much attention in various fields, such as antimicrobial activity, therapeutics, bio-molecular detection, silver nanocoated medical devices and optical receptor. Moreover, the biological approach, in particular the usage of natural organisms has offered a reliable, simple, nontoxic and environmental friendly method. Hence, the current article is focused on the biological synthesis of silver nanoparticles and their application in the biomedical field.

SELECTION OF CITATIONS
SEARCH DETAIL
...