Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Arch Biochem Biophys ; 754: 109924, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354877

ABSTRACT

Enzymes of the enolase superfamily share a conserved structure and a common partial reaction (i.e., metal-assisted, Brønsted base-catalyzed enol(ate) formation). The architectures of the enolization apparatus at the active sites of the mandelate racemase (MR)-subgroup members MR and l-fuconate dehydratase (FucD) are almost indistinguishable at the structural level. Tartronate and 3-hydroxypyruvate (3-HP) recognize the enolization apparatus and can be used to interrogate the active sites for differences that may not be apparent from structural data. We report a circular dichroism-based assay of FucD activity that monitors the change in ellipticity at 216 nm (Δ[Θ]S-P = 8985 ± 87 deg cm2 mol-1) accompanying the conversion of l-fuconate to 2-keto-3-deoxy-l-fuconate. Tartronate was a linear mixed-type inhibitor of FucD (Ki = 8.4 ± 0.7 mM, αKi = 63 ± 11 mM), binding 18-fold weaker than l-fuconate, compared with 2-fold weaker binding of tartronate by MR relative to mandelate. 3-HP irreversibly inactivated FucD (kinact/KI = 0.018 ± 0.002 M-1s-1) with an efficiency that was ∼4.6 × 103-fold less than that observed with MR. The inactivation arose predominantly from modifications at multiple sites and Tris-HCl, but not l-fuconate, afforded protection against inactivation. Similar to the reaction of 3-HP with MR, 3-HP modified the Brønsted base catalyst (Lys 220) at the active site of FucD, which was facilitated by the Brønsted acid catalyst His 351. Thus, the interactions of tartronate and 3-HP with MR and FucD revealed differences in binding affinity and reactivity that differentiated between the enzymes' enolization apparatuses.


Subject(s)
Phosphopyruvate Hydratase , Tartronates , Phosphopyruvate Hydratase/chemistry , Phosphopyruvate Hydratase/metabolism , Hydro-Lyases/chemistry , Racemases and Epimerases/metabolism , Kinetics
2.
J Vector Borne Dis ; 56(3): 189-199, 2019.
Article in English | MEDLINE | ID: mdl-32655067

ABSTRACT

BACKGROUND & OBJECTIVES: Malaria has remained a global health problem despite the effective control and treatment measures. In the backdrop of drug resistance, developing novel hybrid molecules targeting the sexual stages (gametocytes) of the human malaria parasite Plasmodium falciparum is of great significance. Recently, chalcone- based polyphenols have generated a great interest in the malaria research community worldwide due to their ease of synthesis and significant biological activity. The primary objective of this study was to investigate the interaction of a newly synthesized quinoline-appended chalcone derivative (ADMQ) with gametocyte specific proteins, Pfg 27 and Pfs 25 and explore its in vitro gametocytocidal potential. METHODS: The characterization of ligand-protein interactions at the atomistic level was done by a simulation strategy that combines molecular docking and molecular dynamics (MD) simulation in a coherent workflow. The X-ray crystal structure of Pfg 27 was retrieved from protein data bank and Pfs 25 was built using the Iterative Threading ASSembly Refinement (I-TASSER) server. The detailed interaction of both ADMQ and a known gametocytocidal agent, methylene blue (MB) (used as a positive control) with gametocyte proteins Pfg 27 and Pfs 25 was studied with a 50 ns explicit MD simulation. The ligand binding pose in terms of glide score, molecular mechanics-generalized born surface area (MM-GBSA) binding energies, protein-ligand root-mean-square-deviation (RMSD) and secondary structure elements (SSE) changes were analyzed accordingly. The direct effect of ADMQ on structural integrity of P. falciparum gametocytes was also examined using in vitro microscopy. RESULTS: The analogous Glide score and MM-GBSA free energy of binding indicated stable interactions for both ADMQ and MB harboured in the active site of targeted gametocyte proteins, Pfg 27 and Pfs 25, separately. Explicit MD simulation by Desmond software package indicated similar distinguishable conformational changes in the active site of target polypeptide chain due to the specific accommodation of ADMQ molecule. The simulation also manifested comparable mechanistic profile in terms of protein-ligand RMSD and changes in secondary structure elements (SSE). Further, ADMQ treatment was found to adversely affect the structural integrity of gametocytes, which resulted in appearance of vesicles protruding from the gametocytes. INTERPRETATION & CONCLUSION: The consolidated in silico molecular modeling and in vitro study described herein may give an insight into the interaction patterns of quinoline-chalcone hybrids with critical gametocyte proteins in the mosquito. This study will possibly pave the way for further exploration of similar heterocyclic quinoline-chalcone hybrids to open up new avenues in drug candidate development against P. falciparum gametocytes.


Subject(s)
Antimalarials/pharmacology , Chalcones/pharmacology , Molecular Docking Simulation , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Life Cycle Stages/drug effects , Ligands , Protein Binding , Protozoan Proteins/chemistry
3.
FEBS Lett ; 592(20): 3399-3413, 2018 10.
Article in English | MEDLINE | ID: mdl-30194685

ABSTRACT

Glutamate racemases (GR) catalyze the racemization of d- and l-glutamate and are targets for the development of antibiotics. We demonstrate that GR from the periodontal pathogen Fusobacterium nucleatum (FnGR) catalyzes the racemization of d-homocysteic acid (d-HCA), while l-HCA is a poor substrate. This enantioselectivity arises because l-HCA perturbs FnGR's monomer-dimer equilibrium toward inactive monomer. The inhibitory effect of l-HCA may be overcome by increasing the total FnGR concentration or by adding glutamate, but not by blocking access to the active site through site-directed mutagenesis, suggesting that l-HCA binds at an allosteric site. This phenomenon is also exhibited by GR from Bacillus subtilis, suggesting that enantiospecific, "substrate"-induced dissociation of oligomers to form inactive monomers may furnish a new inhibition strategy.


Subject(s)
Amino Acid Isomerases/chemistry , Bacterial Proteins/chemistry , Homocysteine/analogs & derivatives , Protein Structure, Quaternary , Allosteric Site , Amino Acid Isomerases/metabolism , Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , Biocatalysis , Catalytic Domain , Fusobacterium nucleatum/enzymology , Homocysteine/chemistry , Homocysteine/metabolism , Kinetics , Stereoisomerism , Substrate Specificity
4.
Protein Eng Des Sel ; 31(4): 135-145, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29850884

ABSTRACT

Mandelate racemase (MR) serves as a paradigm for our understanding of enzyme-catalyzed deprotonation of a carbon acid substrate. To facilitate structure-function studies on MR using non-natural amino acid substitutions, we engineered the Cys92Ser/Cys264Ser variant (dmMR) as a platform for introducing Cys residues at specific locations for subsequent covalent modification. While the highly reactive thiol of Cys furnishes a site for chemical modification, site-specificity requires that other Cys residues be non-reactive or replaced by a non-reactive amino acid, especially if chemical modification is conducted under denaturing conditions. The catalytic efficiency of dmMR is reduced only ~2-fold relative to wild-type MR, making dmMR a viable platform for the site-specific introduction of Cys. As an example, the inactive Lys166Cys variant of dmMR was treated with ethylenimine under denaturing conditions to replace the Brønsted acid-base catalyst Lys 166 with the non-natural amino acid γ-thialysine. Comparison of the pH-activity profiles of dmMR and the active γ-thialysine variant revealed a reduction in the pKa for the side chain amino group of ~0.4 units for the latter variant. Unlike wild-type MR for which diffusion is partially rate-limiting, dmMR and the γ-thialysine variant showed no dependence on the solvent viscosity suggesting that the chemical step is fully rate-limiting.


Subject(s)
Amino Acid Substitution , Cysteine/analogs & derivatives , Racemases and Epimerases/chemistry , Racemases and Epimerases/genetics , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Refolding , Protein Stability , Racemases and Epimerases/metabolism , Substrate Specificity , Viscosity
5.
ACS Omega ; 3(8): 10114-10128, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459141

ABSTRACT

The principal intent of this work is to explore whether the site-specific binding of a newly synthesized quinoline-appended anthracenyl chalcone, (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ), with an extracellular protein of the human circulatory system, human serum albumin (HSA), can control the rotamerization of its sole tryptophan residue, Trp-214. With this aim, we have systematically studied the binding affinity, interactions, and localization pattern of the title compound inside the specific binding domain of the transport protein and any conformation alteration caused therein. Multiple spectroscopic experiments substantiated by an in silico molecular modeling exercise provide evidence for the binding of the guest ADMQ in the hydrophobic domain of HSA, which is primarily constituted by residues Trp-214, Arg-218, Arg-222, Asp-451, and Tyr-452. Rotationally restricted ADMQ prefers to reside in Sudlow site I (subdomain IIA) of HSA in close proximity (2.45 nm) to the intrinsic fluorophore Trp-214 and is interestingly found to control its vital rotamerization process. The driving force for this rotational interconversion is predominantly found to be governed by the direct interaction of ADMQ with Trp-214. However, the role of induced conformational perturbation in the biomacromolecule itself upon ADMQ adoption cannot be ruled out completely, as indicated by circular dichroism, 3D fluorescence, root-mean-square deviation, root-mean-square fluctuation, and secondary structure element observations. The comprehensive spectroscopic study outlined herein provides important information on the biophysical interaction of a chalcone-based potential therapeutic candidate with a carrier protein, exemplifying its utility in having a regulatory effect on the microconformations of Trp-214.

6.
Bioorg Chem ; 75: 332-346, 2017 12.
Article in English | MEDLINE | ID: mdl-29096094

ABSTRACT

A comparative biophysical study on the individual conformational adaptation embraced by two homologous serum albumins (SA) (bovine and human) towards a potential anticancer bioorganic compound 2-(6-chlorobenzo[d] thiazol-2-yl)-1H-benzo[de] isoquinoline-1,3(2H)- dione (CBIQD) is apparent from the discrimination in binding behavior and the ensuing consequences accomplished by combined in vitro optical spectroscopy, in silico molecular docking and molecular dynamics (MD) simulation. The Sudlow site I of HSA although anion receptive, harbors neutral CBIQD in Sudlow site I (subdomain IIA, close to Trp) of HSA, while in BSA its prefers to snugly fit into Sudlow site II (subdomain IIIA, close to Tyr). Based on discernable diminution of HSA mean fluorescence lifetime as a function of biluminophore concentration, facile occurrence of fluorescence resonance energy transfer (FRET) is substantiated as the probable quenching mechanism accompanied by structural deformations in the protein ensemble. CBIQD establishes itself within HSA close to Trp214, and consequently reduces the micropolarity of the cybotactic environment that is predominantly constituted by hydrophobic amino acid residues. The stronger association of CBIQD with HSA encourages an allosteric modulation leading to slight deformation in its secondary structure whereas for BSA the association is comparatively weaker. Sudlow site I of HSA is capable to embrace a favorable conformation like malleable gold to provide room for incoming CBIQD, whereas for BSA it behaves more like rigid cast-iron which does not admit any change thus forcing CBIQD to occupy an altogether different binding location i.e. the Sudlow site II. The anticancer CBIQD is found to be stable within the HSA scaffold as vindicated by root mean square deviation (RMSD) and root mean square fluctuation (RMSF) obtained by MD simulation. A competitively inhibited esterase-like activity of HSA upon CBIQD binding to Lys199 and Arg257 residues, plausibly envisions that similar naphthalimide based prodrugs, bearing ester functionality, can be particularly activated by Sudlow site I of HSA. The consolidated spectroscopic research described herein may encourage design of naphthalimide based pro-drugs for effective in vivo biodistribution using HSA-based drug delivery systems.


Subject(s)
Antineoplastic Agents/chemistry , Serum Albumin/chemistry , Animals , Antineoplastic Agents/metabolism , Cattle , Circular Dichroism , Fluorescence Resonance Energy Transfer , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Naphthalimides/chemistry , Naphthalimides/metabolism , Protein Binding , Serum Albumin/metabolism , Thermodynamics
7.
J Biol Inorg Chem ; 22(1): 47-59, 2017 01.
Article in English | MEDLINE | ID: mdl-27822620

ABSTRACT

Amyloid-ß peptides and their metal-associated aggregated states have been implicated in the pathogenesis of Alzheimer's disease. The present paper epitomises the design and synthesis of a small, neutral, lipophilic benzothiazole Schiff base (E)-2-((6-chlorobenzo[d]thiazol-2-ylimino)methyl)-5-diethylamino)phenol (CBMDP), and explores its multifunctionalty as a potential metal chelator/fluorophore using UV-visible absorption, steady-state fluorescence, single molecule fluorescence correlation spectroscopic (FCS) techniques which is further corroborated by in silico studies. Some pharmaceutically relevant properties of the synthesized compound have also been calculated theoretically. Steady-state fluorescence and single molecule FCS reveal that the synthesized CBMDP not only recognizes oligomeric Aß40, but could also be used as an amyloid-specific extrinsic fluorophore as it shows tremendous increase in its emission intensity in the presence of Aß40. Molecular docking exercise and MD simulation reveal that CBMDP localizes itself in the crucial amyloidogenic and copper-binding region of Aß40 and undergoes a strong binding interaction via H-bonding and π-π stacking. It stabilizes the solitary α-helical Aß40 monomer by retaining the initial conformation of the Aß central helix and mostly interacts with the hydrophilic N-terminus and the α-helical region spanning from Ala-2 to Val-24. CBMDP exhibits strong copper as well as zinc chelation ability and retards the rapid copper-induced aggregation of amyloid peptide. In addition, CBMDP shows radical scavenging activity which enriches its functionality. Overall, the consolidated in vitro and in silico results obtained for the synthesized molecule could provide a rational template for developing new multifunctional agents.


Subject(s)
Chelating Agents/chemistry , Chelating Agents/pharmacology , Drug Discovery , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Spectrum Analysis , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Caco-2 Cells , Chelating Agents/metabolism , Heterocyclic Compounds/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Aggregates/drug effects , Protein Stability , Protein Structure, Secondary , Reactive Oxygen Species/metabolism , Schiff Bases/chemistry
8.
Phys Chem Chem Phys ; 18(40): 27910-27920, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27711474

ABSTRACT

The legacy of phosphorescence from expensive organometallic compounds has inspired researchers to develop efficient metal-free organic phosphors. Although organic phosphors offer a cheaper alternative, the long-lived triplets of organic phosphors that are primarily consumed by vibrational dissipation need to be adequately suppressed, and this provides an opportunity to design new organic entities, at par with the organometallic compounds, based on conformational control and incorporation of useful functional groups to alter their emissive properties, especially phosphorescence. Here, we have achieved a proficient dual state emission, underlining the key design rule of conformational control in an organic molecular platform for 2-(6-chlorobenzo[d]thiazol-2-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (CBIQD). In contrast to other known naphthalimides, the system limiting access to non-radiative triplet states is achieved by steric encumbrance which exhibits strong phosphorescence. Here, in addition to strong fluorescence (from planar conformer), phosphorescence is unlocked by suppression of non-radiative channels from the non-planar conformer in glassy solvents (77 K) and when embedded in a polymer matrix of poly(methyl methacrylate) (PMMA) at RT. The spectroscopic delineation of adopted geometry and optical property relationship is sought by a steric approach, extent of intramolecular charge transfer (ICT), presence of carbonyl groups, directed heavy atom effect and the spin-orbit coupling (SOC) invoked by -S- and -Cl atoms. Time dependent density functional theory (TD-DFT) is used to explain the favourable mechanistic path for the decay of excited states (ESs) leading to phosphorescence from a non-planar conformer and fluorescence from a planar conformer. The spectacular access to the radiative singlet and triplet states suggests that there is less scope for loss channels. The phosphorescence of the CBIQD-PMMA system may find use in other biomedical applications due to the biocompatibility of each component.

9.
J Phys Chem A ; 120(7): 1000-11, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26816264

ABSTRACT

The present study embodies design, in silico DNA interaction, synthesis of benzothiazole containing naphthalimide derivative, 2-(6-chlorobenzo[d]thiazol-2-yl)-1H-benzo[de] isoquinoline-1,3(2H)-dione (CBIQD) along with its systematic photophysics, solvatochromic behavior, and solvation dynamics using an experimental and theoretical spectroscopic approach. Steady-state dual emission and biexponential fluorescence decay reveals the formation of two different excited species. Ground- and excited-state optimized geometry and the potential-energy curve obtained from DFT and TD-DFT calculation ascertained the existence of nonplanar and planar conformation. When the solvent polarity is changed from nonpolar to protic polar, the feebly emissive emission band highly intensifies probably due to the reversal of n, π*-π, π* emissive state along with consequent modulation of their energy gap that is induced by H-bonding. Excluding nonpolar solvents, in all other solvents, the Stokes shift correlates linearly with orientation polarizability, whereas in water, the story remains intriguing. With photoexcitation, intermolecular H-bonding stimulates the pyramidalization tendency of imide "N" with subsequent conformational change of GS nonplanar geometry to a coplanar one through acceptor rehybridization generating a rehybridized intramolecular charge transfer (RICT) state that caused a dramatic fluorescence upsurge. This allosteric modulation is promoted by excited-state H-bonding dynamics especially in strong H-bond donor water. A close interplay between preferential solvation and the proximity effect is evident in the emission behavior in a benzene (Bn)-ethanol (EtOH) binary mixture. Molecular docking analysis delineates considerable noncovalent sandwiched π-π stacking interactions of CBIQD with the pyrimidine rings as well as with imidazole rings of dG 6 and dG 2 base pairs of B-DNA double helix, which probably suffices the design strategy adopted. Overall, a strategic design to synthesize a highly fluorescent and potential bioactive agent is executed to revolutionize the fluorophore field due its enormous progressive importance in biochemical applications.


Subject(s)
Drug Design , Fluorescent Dyes/chemical synthesis , Isoquinolines/chemical synthesis , Naphthalimides/chemical synthesis , Thiazoles/chemical synthesis , Fluorescent Dyes/chemistry , Isoquinolines/chemistry , Molecular Conformation , Molecular Docking Simulation , Naphthalimides/chemistry , Thiazoles/chemistry
10.
Article in English | MEDLINE | ID: mdl-26163783

ABSTRACT

The present study embodies the detail DNA binding interaction of a potential bioactive quinoline appended chalcone derivative (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ) with calf thymus DNA (ctDNA) and its consequences by UV-Vis absorption, steady state fluorescence spectroscopy, fluorescence anisotropy, circular dichromism, helix melting, agarose gel electrophoresis, molecular docking, Induced Fit Docking (IFD) and molecular dynamics (MD) simulation. The UV-Vis absorption and fluorescence study reveal that the molecule undergoes considerable interaction with the nucleic acid. The control KI quenching experiment shows the lesser accessibility of ADMQ molecule to the ionic quencher (I(-)) in presence of ctDNA as compared to the bulk aqueous phase. Insignificant change in helix melting temperature as well as in circular dichromism (CD) spectra points toward non-covalent groove binding interaction. The moderate rotational confinement of this chalcone derivative (anisotropy=0.106) trapped in the nucleic acid environment, the comparative displacement assay with well-known minor groove binder Hoechst 33258 and intercalator Ethidium Bromide establishes the minor groove binding interactions of the probe molecule. Molecular docking, IFD and MD simulation reveal that the DNA undergoes prominent morphological changes in terms of helix unwinding and bending to accommodate ADMQ in a crescent shape at an angle of 110° in a sequence specific manner. During interaction, ADMQ rigidifies and bends the sugar phosphate backbone of the nucleic acid and thereby shortens its overall length by 3.02Å. Agarose gel electrophoresis experiment with plasmid pBR 322 reveals that the groove binded ADMQ result in a concentration dependent cleavage of plasmid DNA into its supercoiled and nicked circular form. The consolidated spectroscopic research described herein provides quantitative insight into the interaction of a heterocyclic chalcone derivative with relevant target nucleic acid, which may be useful for the future research on chalcone based therapeutic agents.


Subject(s)
Anthracenes/chemistry , Anthracenes/metabolism , DNA Cleavage , DNA/chemistry , DNA/metabolism , Molecular Docking Simulation , Quinolines/chemistry , Quinolines/metabolism , Animals , Cattle , Circular Dichroism , Fluorescence Polarization , Models, Molecular , Nucleic Acid Conformation , Spectrometry, Fluorescence , Thermodynamics
11.
J Phys Chem B ; 118(26): 7257-66, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24962605

ABSTRACT

The present study epitomizes the design, synthesis, photophysics, solvation, and interaction with calf-thymus DNA of a potential antitumor, anticancer quinoline-appended chalcone derivative, (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ) using steady state absorption and fluorescence spectroscopy, molecular modeling, molecular docking, Fourier-transform infrared spectroscopy (FTIR), molecular dynamics (MD) simulation, and gel electrophoresis studies. ADMQ shows an unusual photophysical behavior in a variety of solvents of different polarity. The dual emission has been observed along with the formation of twisted intramolecular charge transfer (TICT) excited state. The radiationless deactivation of the TICT state is found to be promoted strongly by hydrogen bonding. Quantum mechanical (DFT, TDDFT, and ZINDO-CI) calculations show that the ADMQ is sort of molecular rotor which undergoes intramolecular twist followed by a complete charge transfer in the optimized excited state. FTIR studies reveals that ADMQ undergoes important structural change from its native structure to a ß-hydroxy keto form in water at physiological pH. The concentration-dependent DNA cleavage has been identified in agarose gel DNA electrophoresis experiment and has been further supported by MD simulation. ADMQ forms hydrogen bond with the deoxyribose sugar attached with the nucleobase adenine DA-17 (chain A) and result in significant structural changes which potentially cleave DNA double helix. The compound does not exhibit any deleterious effect or toxicity to the E. coli strain in cytotoxicity studies. The consolidated spectroscopic research described herein can provide enormous information to open up new avenues for designing and synthesizing chalcone derivatives with low systematic toxicity for medicinal chemistry research.


Subject(s)
Anthracenes/chemical synthesis , Anthracenes/pharmacology , Chalcone/analogs & derivatives , DNA Damage/drug effects , DNA/metabolism , Drug Design , Quinolines/chemistry , Quinolines/chemical synthesis , Quinolines/pharmacology , Animals , Anthracenes/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cattle , DNA/chemistry , Escherichia coli/drug effects , Escherichia coli/genetics , Hydrogen Bonding , Molecular Docking Simulation , Quantum Theory , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...