Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 449: 139240, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38599109

ABSTRACT

The study reports the efficacy of nanofabricated citronellal inside the chitosan biopolymer (NeCn) against Aspergillus flavus growth, aflatoxin B1 (AFB1) production, and active ingredient biodeterioration (Piperine) in Piper longum L. The prepared NeCn was characterized by Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FTIR). The results revealed that the NeCn exhibited distantly improved antifungal (1.25 µL/mL) and AFB1 inhibition (1.0 µL/mL) compared to free Cn. The perturbances in membrane function, mitochondrial membrane potential, antioxidant defense system, and regulatory genes (Ver-1 and Nor-1) of AFB1 biosynthesis were reported as probable modes of action of NeCn. The NeCn (1.25 µL/mL) effectively protects the P. longum from A. flavus (78.8%), AFB1 contamination (100%), and deterioration of Piperine (62.39%), thus demonstrating its potential as a promising novel antifungal agent for food preservation.


Subject(s)
Acyclic Monoterpenes , Aflatoxin B1 , Aspergillus flavus , Chitosan , Piper , Aflatoxin B1/metabolism , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Chitosan/chemistry , Chitosan/pharmacology , Piper/chemistry , Biopolymers/chemistry , Biopolymers/pharmacology , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Aldehydes/pharmacology , Aldehydes/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Food Preservation/methods , Monoterpenes/pharmacology , Monoterpenes/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...