Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 28(2): 30, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34993665

ABSTRACT

Deep eutectic solvents (DESs) emerged as green solvents for new generation technologies owing to their high chemical and thermal stability. Addition of restricted amount of organic solvents into the DESs plays a significant role in the improvement of thermodynamic and the transport properties to work as a potential solvent in process industries. In this paper, molecular dynamics (MD) simulations were performed to understand the thermophysical and transport properties of choline chloride-based DES (reline) and primary alcohol (methanol and ethanol) mixture in relation to microscopic structure. Density, radial distribution function, coordination number, average number of H-bond, diffusion coefficient and spatial distribution function was calculated in order to understand the structure and involvement of H-bond network at an atomic level. H-bond and spatial distribution function analyses revealed that the chloride ion prefers to be spatially distributed around hydroxyl group of alcohol and found to be more pronounced upon increase in alcohol concentration. As a consequence, it was observed that the H-bonds between Cl- and urea decreases overall with the loading of alcohol and effect is more pronounced beyond a concentration of 0.4. Self-diffusion values for choline, Cl- and urea were found to be increased significantly upon increase in concentration of alcohol from 0.6 to 0.8. Overall, our simulation points to the interplay and interactions between the chloride ions and the solvents in determining the structural and transport properties of choline chloride-based DES.

2.
Front Mol Biosci ; 7: 583523, 2020.
Article in English | MEDLINE | ID: mdl-33195427

ABSTRACT

Statistical and epidemiological data imply temperature sensitivity of the SARS-CoV-2 coronavirus. However, the molecular level understanding of the virus structure at different temperature is still not clear. Spike protein is the outermost structural protein of the SARS-CoV-2 virus which interacts with the Angiotensin Converting Enzyme 2 (ACE2), a human receptor, and enters the respiratory system. In this study, we performed an all atom molecular dynamics simulation to study the effect of temperature on the structure of the Spike protein. After 200 ns of simulation at different temperatures, we came across some interesting phenomena exhibited by the protein. We found that the solvent exposed domain of Spike protein, namely S1, is more mobile than the transmembrane domain, S2. Structural studies implied the presence of several charged residues on the surface of N-terminal Domain of S1 which are optimally oriented at 10-30°C. Bioinformatics analyses indicated that it is capable of binding to other human receptors and should not be disregarded. Additionally, we found that receptor binding motif (RBM), present on the receptor binding domain (RBD) of S1, begins to close around temperature of 40°C and attains a completely closed conformation at 50°C. We also found that the presence of glycan moieties did not influence the observed protein dynamics. Nevertheless, the closed conformation disables its ability to bind to ACE2, due to the burying of its receptor binding residues. Our results clearly show that there are active and inactive states of the protein at different temperatures. This would not only prove beneficial for understanding the fundamental nature of the virus, but would be also useful in the development of vaccines and therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...