Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 363(3): 377-393, 2017 12.
Article in English | MEDLINE | ID: mdl-28954811

ABSTRACT

(R)-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-1-yl)-1-(4-methylbenzyl)pyrrolidin-2-one (BMS-986169) and the phosphate prodrug 4-((3S,4S)-3-fluoro-1-((R)-1-(4-methylbenzyl)-2-oxopyrrolidin-3-yl)piperidin-4-yl)phenyl dihydrogen phosphate (BMS-986163) were identified from a drug discovery effort focused on the development of novel, intravenous glutamate N-methyl-d-aspartate 2B receptor (GluN2B) negative allosteric modulators (NAMs) for treatment-resistant depression (TRD). BMS-986169 showed high binding affinity for the GluN2B subunit allosteric modulatory site (Ki = 4.03-6.3 nM) and selectively inhibited GluN2B receptor function in Xenopus oocytes expressing human N-methyl-d-aspartate receptor subtypes (IC50 = 24.1 nM). BMS-986169 weakly inhibited human ether-a-go-go-related gene channel activity (IC50 = 28.4 µM) and had negligible activity in an assay panel containing 40 additional pharmacological targets. Intravenous administration of BMS-986169 or BMS-986163 dose-dependently increased GluN2B receptor occupancy and inhibited in vivo [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) binding, confirming target engagement and effective cleavage of the prodrug. BMS-986169 reduced immobility in the mouse forced swim test, an effect similar to intravenous ketamine treatment. Decreased novelty suppressed feeding latency, and increased ex vivo hippocampal long-term potentiation was also seen 24 hours after acute BMS-986163 or BMS-986169 administration. BMS-986169 did not produce ketamine-like hyperlocomotion or abnormal behaviors in mice or cynomolgus monkeys but did produce a transient working memory impairment in monkeys that was closely related to plasma exposure. Finally, BMS-986163 produced robust changes in the quantitative electroencephalogram power band distribution, a translational measure that can be used to assess pharmacodynamic activity in healthy humans. Due to the poor aqueous solubility of BMS-986169, BMS-986163 was selected as the lead GluN2B NAM candidate for further evaluation as a novel intravenous agent for TRD.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Organophosphates/therapeutic use , Piperidines/therapeutic use , Prodrugs/therapeutic use , Pyrrolidinones/therapeutic use , Receptors, N-Methyl-D-Aspartate/metabolism , Administration, Intravenous , Allosteric Regulation , Animals , Antidepressive Agents/adverse effects , Antidepressive Agents/pharmacokinetics , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Brain Waves/drug effects , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Dissociative Disorders/chemically induced , Macaca fascicularis , Male , Memory, Short-Term/drug effects , Mice , Motor Activity/drug effects , Organophosphates/adverse effects , Organophosphates/pharmacokinetics , Piperidines/adverse effects , Piperidines/pharmacokinetics , Prodrugs/adverse effects , Prodrugs/pharmacokinetics , Pyrrolidinones/adverse effects , Pyrrolidinones/pharmacokinetics , Radioligand Assay , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Xenopus
2.
Behav Pharmacol ; 18(3): 213-7, 2007 May.
Article in English | MEDLINE | ID: mdl-17426485

ABSTRACT

The central histaminergic system is reported to mediate behavioural, hormonal and physiological homeostasis of living organisms. Recent reports indicate its prominent role in various neurobehavioural disorders such as depression and psychosis. This study evaluated the effect of activation of the central histaminergic system in anxiety-like conditions, using the elevated plus-maze test in mice, and elucidated the role of different histaminergic receptors mediating such effects. Peripheral administration of L-histidine (L-His), in a dose-dependent manner, significantly decreased the exploration time in open arms and number of entries into open arms without modifying the number of entries into closed arms of the elevated plus-maze, indicating anxiogenesis. Further, such effects of central histamine were significantly attenuated, in a dose-dependent manner, by pretreatment with pyrilamine (H1 receptor antagonist). Pretreatment with either zolantidine (H2 receptor antagonist) or thioperamide (H3 receptor antagonist), however, failed to attenuate the L-His-induced anxiogenesis. Our results indicate that anxiogenic effects of central histaminergic system appear to be mediated prominently by activation of H1 receptors.


Subject(s)
Anxiety/chemically induced , Anxiety/psychology , Histidine , Receptors, Histamine H1/drug effects , Animals , Anti-Anxiety Agents/pharmacology , Benzothiazoles/pharmacology , Diazepam/pharmacology , Dose-Response Relationship, Drug , Histamine Antagonists/pharmacology , Histamine H1 Antagonists/pharmacology , Histamine H2 Antagonists/pharmacology , Male , Mice , Phenoxypropanolamines/pharmacology , Piperidines/pharmacology , Pyrilamine/pharmacology , Receptors, Histamine/drug effects , Receptors, Histamine/physiology , Receptors, Histamine H3/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...