Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Math Methods Med ; 2022: 8571970, 2022.
Article in English | MEDLINE | ID: mdl-36132548

ABSTRACT

The level of patient's illness is determined by diagnosing the problem through different methods like physically examining patients, lab test data, and history of patient and by experience. To treat the patient, proper diagnosis is very much important. Arrhythmias are irregular variations in normal heart rhythm, and detecting them manually takes a long time and relies on clinical skill. Currently machine learning and deep learning models are used to automate the diagnosis by capturing unseen patterns from datasets. This research work concentrates on data expansion using augmentation technique which increases the dataset size by generating different images. The proposed system develops a medical diagnosis system which can be used to classify arrhythmia into different categories. Initially, machine learning techniques like Support Vector Machine (SVM), Naïve Bayes (NB), and Logistic Regression (LR) are used for diagnosis. In general deep learning models are used to extract high level features and to provide improved performance over machine learning algorithms. In order to achieve this, the proposed system utilizes a deep learning algorithm known as Convolutional Neural Network-baseline model for arrhythmia detection. The proposed system also adopts a novel hyperparameter tuned CNN model to acquire optimal combination of parameters that minimizes loss function and produces better result. The result shows that the hyper-tuned model outperforms other machine learning models and CNN baseline model for accurate classification of normal and other five different arrhythmia types.


Subject(s)
Deep Learning , Algorithms , Arrhythmias, Cardiac/diagnostic imaging , Bayes Theorem , Electrocardiography , Humans , Machine Learning , Support Vector Machine
2.
Comput Math Methods Med ; 2022: 9771212, 2022.
Article in English | MEDLINE | ID: mdl-35928972

ABSTRACT

As a result of the COVID-19 outbreak, which has put the world in an unprecedented predicament, thousands of people have died. Data from structured and unstructured sources are combined to create user-friendly platforms for clinicians and researchers in an integrated bioinformatics approach. The diagnosis and treatment of COVID-19 disease can be accelerated using AI-based platforms. In the battle against the virus, however, researchers and decision-makers must contend with an ever-increasing volume of data, referred to as "big data." VGG19 and ResNet152V2 pretrained deep learning architectures were used in this study. With these datasets, we could train and fine-tune our model on lung ultrasound frames from healthy people as well as from patients with COVID-19 and pneumonia. In two separate experiments, we evaluated two different classes of predictive models: one against pneumonia and the other against non-COVID-19. COVID-19 can be detected and diagnosed accurately and efficiently using these models, according to the findings. Therefore, the use of these inexpensive and affordable deep learning methods should be considered as a reliable method for the diagnosis of COVID-19.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , COVID-19 Testing , Humans , SARS-CoV-2
3.
Comput Intell Neurosci ; 2022: 8014979, 2022.
Article in English | MEDLINE | ID: mdl-35463234

ABSTRACT

Retinal abnormalities have emerged as a serious public health concern in recent years and can manifest gradually and without warning. These diseases can affect any part of the retina, causing vision impairment and indeed blindness in extreme cases. This necessitates the development of automated approaches to detect retinal diseases more precisely and, preferably, earlier. In this paper, we examine transfer learning of pretrained convolutional neural network (CNN) and then transfer it to detect retinal problems from Optical Coherence Tomography (OCT) images. In this study, pretrained CNN models, namely, VGG16, DenseNet201, InceptionV3, and Xception, are used to classify seven different retinal diseases from a dataset of images with and without retinal diseases. In addition, to choose optimum values for hyperparameters, Bayesian optimization is applied, and image augmentation is used to increase the generalization capabilities of the developed models. This research also provides a comparison of the proposed models as well as an analysis of them. The accuracy achieved using DenseNet201 on the Retinal OCT Image dataset is more than 99% and offers a good level of accuracy in classifying retinal diseases compared to other approaches, which only detect a small number of retinal diseases.


Subject(s)
Deep Learning , Retinal Diseases , Bayes Theorem , Humans , Neural Networks, Computer , Retinal Diseases/diagnostic imaging , Tomography, Optical Coherence/methods
4.
Comput Math Methods Med ; 2022: 7672196, 2022.
Article in English | MEDLINE | ID: mdl-35116074

ABSTRACT

SARS-CoV-2 is a novel virus, responsible for causing the COVID-19 pandemic that has emerged as a pandemic in recent years. Humans are becoming infected with the virus. In 2019, the city of Wuhan reported the first-ever incidence of COVID-19. COVID-19 infected people have symptoms that are related to pneumonia, and the virus affects the body's respiratory organs, making breathing difficult. A real-time reverse transcriptase-polymerase chain reaction (RT-PCR) kit is used to diagnose the disease. Due to a shortage of kits, suspected patients cannot be treated promptly, resulting in disease spread. To develop an alternative, radiologists looked at the changes in radiological imaging, like CT scans, that produce comprehensive pictures of the body of excellent quality. The suspected patient's computed tomography (CT) scan is used to distinguish between a healthy individual and a COVID-19 patient using deep learning algorithms. A lot of deep learning methods have been proposed for COVID-19. The proposed work utilizes CNN architectures like VGG16, DeseNet121, MobileNet, NASNet, Xception, and EfficientNet. The dataset contains 3873 total CT scan images with "COVID" and "Non-COVID." The dataset is divided into train, test, and validation. Accuracies obtained for VGG16 are 97.68%, DenseNet121 is 97.53%, MobileNet is 96.38%, NASNet is 89.51%, Xception is 92.47%, and EfficientNet is 80.19%, respectively. From the obtained analysis, the results show that the VGG16 architecture gives better accuracy compared to other architectures.


Subject(s)
COVID-19/diagnosis , COVID-19/pathology , Deep Learning , Datasets as Topic , Humans , Pandemics , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...