Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 61(6): 1188-1200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38562592

ABSTRACT

A lab-scale continuous ohmic heating (COH) system was developed, and its performance was studied for pineapple juice heating as a model sample. The effect of independent parameters [°Brix/Acid (unstandardized, 18, 22, 26) and flow rate (80-120 mL/min) of juice and electric field strength (EFS: 25-45 V/cm)] were analysed for responses viz. come-up-time, heating rate (HR) and system performance coefficient (SPC). The full factorial experimental design was used for this study. The results showed that with an increase in °Brix/Acid, the % acidity and electrical conductivity decreased significantly (p < 0.05); thus, the come-up-time to reach 90 °C increased significantly. The HR was significantly (p < 0.05) influenced by °Brix/Acid and EFS but less so by flow rates at higher EFS. The SPC was more than 0.90 and reduced significantly (p < 0.05) with an increase in °Brix/Acid and flow rate. The HR was modeled using a feed-forward back-propagation artificial neural network (ANN) with the best topology of 3, 5, and 1 neurons in the input (independent), hidden, and output (response) layers, respectively. The model performed efficiently, which is evident from the high R2 (0.998) and low RMSE (1.255). Thus, the COH, with its high efficiency and HR, can effectively be used to process fruit juice. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05961-x.

2.
Crit Rev Food Sci Nutr ; : 1-24, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36260084

ABSTRACT

Refractance window (RW) dryer has an immense advantage in terms of final product quality (textural and color attributes, nutrient retention), energy consumption, and drying time over other conventional dryers. RW is a thin film drying system and a technologically evolving drying process. RW drying is an energy-efficient (re-circulation of water) short drying process as the drying of food materials occurs due to a combined mode of heat transfer conduction, radiation, and convection (hot air circulates over film). The high-quality dried product is obtained because the product temperature remains below 80 °C. RW dryer application is not only limited to drying food products, but it can also be further used for improving the gelling and emulsion properties, formation of leather and edible film, and can be used for handling high protein products, drying leafy vegetables or marine foods as this process does not change any functional properties. Due to these advantages over other drying techniques, RW drying has gained academic and industrial interest in recent years. The industrial application of this technology at large scale is becoming difficult due because of large surface area requirement for mass production. Researchers are trying to scale-up by combing this technology with others technology (Infrared, ultrasound, solar energy, and osmotic dehydration). RW dryer is now extending from the food sector to other sectors like pharmaceutical, cosmetic, pigment, edible film formation, and encapsulation. Majority of the reviews on RW drying focuses on the product quality aspects. This review paper aims to comprehend the RW drying system more mechanistically to understand better the principles, diffusion models explaining the transfer processes, and emerging novel hybrid drying approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...