Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 17(2): e1008548, 2021 02.
Article in English | MEDLINE | ID: mdl-33539361

ABSTRACT

The visual cortex of the mouse brain can be divided into ten or more areas that each contain complete or partial retinotopic maps of the contralateral visual field. It is generally assumed that these areas represent discrete processing regions. In contrast to the conventional input-output characterizations of neuronal responses to standard visual stimuli, here we asked whether six of the core visual areas have responses that are functionally distinct from each other for a given visual stimulus set, by applying machine learning techniques to distinguish the areas based on their activity patterns. Visual areas defined by retinotopic mapping were examined using supervised classifiers applied to responses elicited by a range of stimuli. Using two distinct datasets obtained using wide-field and two-photon imaging, we show that the area labels predicted by the classifiers were highly consistent with the labels obtained using retinotopy. Furthermore, the classifiers were able to model the boundaries of visual areas using resting state cortical responses obtained without any overt stimulus, in both datasets. With the wide-field dataset, clustering neuronal responses using a constrained semi-supervised classifier showed graceful degradation of accuracy. The results suggest that responses from visual cortical areas can be classified effectively using data-driven models. These responses likely reflect unique circuits within each area that give rise to activity with stronger intra-areal than inter-areal correlations, and their responses to controlled visual stimuli across trials drive higher areal classification accuracy than resting state responses.


Subject(s)
Brain Mapping/methods , Machine Learning , Visual Cortex/physiology , Animals , Brain/metabolism , Cluster Analysis , Female , Male , Mice , Mice, Transgenic , Models, Statistical , Neurons/metabolism , Normal Distribution , Photic Stimulation , Photons , Prosencephalon/physiology , Retina/pathology , Visual Fields , Visual Pathways/physiology
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4537-4540, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946874

ABSTRACT

The most common brain-computer interface (BCI) devices use electroencephalography (EEG). EEG signals are noisy owing to the presence of many artifacts, namely head movement, and facial movements like eye blinks or jaw movements. Removal of these artifacts from EEG signals is essential for the success of any downstream BCI application. These artifacts influence different sensors of the EEG. In this paper, we devise algorithms for detection and classification of artifacts. Classification of artifacts into head nod, jaw movement and eye-blink is performed using two different varieties of time warping; namely, linear time warping, and dynamic time warping. The average accuracy of 85% and 90% is obtained using the former, and the later, respectively.


Subject(s)
Artifacts , Electroencephalography , Signal Processing, Computer-Assisted , Algorithms , Blinking , Humans
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4545-4548, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946876

ABSTRACT

There has been a growing interest in studying electroencephalography signals (EEG) as a possible biometric. The brain signals captured by EEG are rich and carry information related to the individual, tasks being performed, mental state, and other channel/measurement noise due to session variability and artifacts. To effectively extract person-specific signatures present in EEG, it is necessary to define a subspace that enhances the biometric information and suppresses other nuisance factors. i-vector and x-vector are state-of-art subspace techniques used in speaker recognition. In this paper, novel modifications are proposed for both frameworks to project person-specific signatures from multi-channel EEG into a subspace. The modified i-vector and x-vector systems outperform baseline i-vector and x-vector systems with an absolute improvement of 10.5% and 15.9%, respectively.


Subject(s)
Algorithms , Brain , Electroencephalography , Artifacts , Biometry , Brain/physiology , Humans , Signal Processing, Computer-Assisted
4.
IEEE Trans Signal Process ; 67(11): 2923-2936, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-33981133

ABSTRACT

Spike estimation from calcium (Ca2+) fluorescence signals is a fundamental and challenging problem in neuroscience. Several models and algorithms have been proposed for this task over the past decade. Nevertheless, it is still hard to achieve accurate spike positions from the Ca2+ fluorescence signals. While existing methods rely on data-driven methods and the physiology of neurons for modelling the spiking process, this work exploits the nature of the fluorescence responses to spikes using signal processing. We first motivate the problem by a novel analysis of the high-resolution property of minimum-phase group delay (GD) functions for multi-pole resonators. The resonators could be connected either in series or in parallel. The Ca2+ indicator responds to a spike with a sudden rise, that is followed by an exponential decay. We interpret the Ca2+ signal as the response of an impulse train to the change in Ca2+ concentration, where the Ca2+ response corresponds to a resonator. We perform minimum-phase group delay-based filtering of the Ca2+ signal for resolving spike locations. The performance of the proposed algorithm is evaluated on nine datasets spanning various indicators, sampling rates and, mouse brain regions. The proposed approach: GDspike, is compared with other spike estimation methods including MLspike, Vogelstein de-convolution algorithm, and data-driven Spike Triggered Mixture (STM) model. The performance of GDSpike is superior to that of the Vogelstein algorithm and is comparable to that of MLSpike. It can also be used to post-process the output of MLSpike, which further enhances the performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...