Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 97(6): e0054323, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37184401

ABSTRACT

HIV reservoirs persist in anatomic compartments despite antiretroviral therapy (ART). Characterizing archival HIV DNA in the central nervous system (CNS) and other tissues is crucial to inform cure strategies. We evaluated paired autopsy brain-frontal cortex (FC), occipital cortex (OCC), and basal ganglia (BG)-and peripheral lymphoid tissues from 63 people with HIV. Participants passed away while virally suppressed on ART at the last visit and without evidence of CNS opportunistic disease. We quantified total HIV DNA in all participants and obtained full-length HIV-envelope (FL HIV-env) sequences from a subset of 14 participants. We detected HIV DNA (gag) in most brain (65.1%) and all lymphoid tissues. Lymphoid tissues had higher HIV DNA levels than the brain (P < 0.01). Levels of HIV gag between BG and FC were similar (P > 0.2), while OCC had the lowest levels (P = 0.01). Females had higher HIV DNA levels in tissues than males (gag, P = 0.03; 2-LTR, P = 0.05), suggesting possible sex-associated mechanisms for HIV reservoir persistence. Most FL HIV-env sequences (n = 143) were intact, while 42 were defective. Clonal sequences were found in 8 out of 14 participants, and 1 participant had clonal defective sequences in the brain and spleen, suggestive of cell migration. From 10 donors with paired brain and lymphoid sequences, we observed evidence of compartmentalized sequences in 2 donors. Our data further the idea that the brain is a site for archival HIV DNA during ART where compartmentalized provirus may occur in a subset of people. Future studies assessing FL HIV-provirus and replication competence are needed to further evaluate the HIV reservoirs in tissues. IMPORTANCE HIV infection of the brain is associated with adverse neuropsychiatric outcomes, despite efficient antiretroviral treatment. HIV may persist in reservoirs in the brain and other tissues, which can seed virus replication if treatment is interrupted, representing a major challenge to cure HIV. We evaluated reservoirs and genetic features in postmortem brain and lymphoid tissues from people with HIV who passed away during suppressed HIV replication. We found a differential distribution of HIV reservoirs across brain regions which was lower than that in lymphoid tissues. We observed that most HIV reservoirs in tissues had intact envelope sequences, suggesting they could potentially generate replicative viruses. We found that women had higher HIV reservoir levels in brain and lymphoid tissues than men, suggesting possible sex-based mechanisms of maintenance of HIV reservoirs in tissues, warranting further investigation. Characterizing the archival HIV DNA in tissues is important to inform future HIV cure strategies.


Subject(s)
Brain , DNA, Viral , HIV-1 , Lymphoid Tissue , Female , Humans , Male , Brain/virology , DNA, Viral/genetics , HIV Infections/virology , Proviruses/genetics , Spleen/virology , Middle Aged , Lymphoid Tissue/virology , env Gene Products, Human Immunodeficiency Virus/genetics , HIV-1/genetics
2.
Retrovirology ; 17(1): 36, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33228686

ABSTRACT

BACKGROUND: A reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-1 infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV-1 and other common pathogens to reverse latency. RESULTS: We obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV-1 and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-1 expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-1 expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. CONCLUSIONS: In this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-1 latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


Subject(s)
Antigens/immunology , HIV Infections/virology , HIV-1/physiology , Virus Latency/immunology , Adult , Aged , Antigen Presentation , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/immunology , Female , HIV-1/immunology , Humans , Immunologic Memory , Interferon-gamma/metabolism , Male , Middle Aged , Muromegalovirus/immunology , RNA, Messenger/metabolism , RNA, Viral/metabolism , Virion/metabolism , Virus Activation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...