Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 23(8): 7543-58, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26732702

ABSTRACT

Mosquito-borne diseases represent a deadly threat for millions of people worldwide. According to recent estimates, about 3.2 billion people, almost half of the world's population, are at risk of malaria. Malaria control is particularly challenging due to a growing number of chloroquine-resistant Plasmodium and pesticide-resistant Anopheles vectors. Newer and safer control tools are required. In this research, gold nanoparticles (AuNPs) were biosynthesized using a cheap flower extract of Couroupita guianensis as reducing and stabilizing agent. The biofabrication of AuNP was confirmed by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), zeta potential, and particle size analysis. AuNP showed different shapes including spheres, ovals, and triangles. AuNPs were crystalline in nature with face-centered cubic geometry; mean size was 29.2-43.8 nm. In laboratory conditions, AuNPs were toxic against Anopheles stephensi larvae, pupae, and adults. LC50 was 17.36 ppm (larva I), 19.79 ppm (larva II), 21.69 ppm (larva III), 24.57 ppm (larva IV), 28.78 ppm (pupa), and 11.23 ppm (adult). In the field, a single treatment with C. guianensis flower extract and AuNP (10 × LC50) led to complete larval mortality after 72 h. In standard laboratory conditions, the predation efficiency of golden wonder killifish, Aplocheilus lineatus, against A. stephensi IV instar larvae was 56.38 %, while in an aquatic environment treated with sub-lethal doses of the flower extract or AuNP, predation efficiency was boosted to 83.98 and 98.04 %, respectively. Lastly, the antiplasmodial activity of C. guianensis flower extract and AuNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of C. guianensis flower extract was 43.21 µg/ml (CQ-s) and 51.16 µg/ml (CQ-r). AuNP IC50 was 69.47 µg/ml (CQ-s) and 76.33 µg/ml (CQ-r). Overall, our results showed the multipurpose effectiveness of C. guianensis-synthesized AuNPs, since they may be proposed as newer and safer tools in the fight against CQ-r strains of P. falciparum and for field control of malaria vectors, in synergy with wonder killifish predators.


Subject(s)
Anopheles/parasitology , Antimalarials/pharmacology , Gold/pharmacology , Insect Vectors/drug effects , Lecythidaceae/chemistry , Metal Nanoparticles/analysis , Plasmodium falciparum/drug effects , Animals , Antimalarials/analysis , Cyprinodontiformes/physiology , Flowers/chemistry , Gold/analysis , Insecticides/analysis , Insecticides/pharmacology , Larva/drug effects , Malaria/parasitology , Malaria/prevention & control , Malaria/transmission , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Predatory Behavior/drug effects , Pupa/drug effects
2.
Parasitol Res ; 115(2): 751-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26499804

ABSTRACT

Aedes albopictus is an important arbovirus vector, including dengue. Currently, there is no specific treatment for dengue. Its prevention solely depends on effective vector control measures. In this study, silver nanoparticles (AgNPs) were biosynthesized using a cheap leaf extract of Berberis tinctoria as reducing and stabilizing agent and tested against Ae. albopictus and two mosquito natural enemies. AgNPs were characterized by using UV­vis spectrophotometry, X-ray diffraction, and scanning electron microscopy. In laboratory conditions, the toxicity of AgNPs was evaluated on larvae and pupae of Ae. albopictus. Suitability Index/Predator Safety Factor was assessed on Toxorhynchites splendens and Mesocyclops thermocyclopoides. The leaf extract of B. tinctoria was toxic against larval instars (I­IV) and pupae of Ae. albopictus; LC50 was 182.72 ppm (I instar), 230.99 ppm (II), 269.65 ppm (III), 321.75 ppm (IV), and 359.71 ppm (pupa). B. tinctoria-synthesized AgNPs were highly effective, with LC50 of 4.97 ppm (I instar), 5.97 ppm (II), 7.60 ppm (III), 9.65 ppm (IV), and 14.87 ppm (pupa). Both the leaf extract and AgNPs showed reduced toxicity against the mosquito natural enemies M. thermocyclopoides and T. splendens. Overall, this study firstly shed light on effectiveness of B. tinctoria-synthesized AgNPs as an eco-friendly nanopesticide, highlighting the concrete possibility to employ this newer and safer tool in arbovirus vector control programs.


Subject(s)
Aedes , Berberis/metabolism , Copepoda , Culicidae , Insecticides/metabolism , Nanoparticles/metabolism , Aedes/drug effects , Animals , Copepoda/drug effects , Copepoda/physiology , Culicidae/drug effects , Culicidae/physiology , Insect Vectors/drug effects , Insecticides/toxicity , Larva/drug effects , Larva/physiology , Microscopy, Electron, Scanning , Nanoparticles/toxicity , Plant Extracts/biosynthesis , Plant Extracts/toxicity , Plant Leaves/chemistry , Pupa/drug effects , Silver , Spectrophotometry, Ultraviolet , X-Ray Diffraction
3.
Parasitol Res ; 115(3): 1015-25, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26573518

ABSTRACT

Mosquitoes (Diptera: Culicidae) serve as important vectors for a wide number of parasites and pathogens of huge medical and veterinary importance. Aedes aegypti is a primary dengue vector in tropical and subtropical urban areas. There is an urgent need to develop eco-friendly mosquitocides. In this study, silver nanoparticles (AgNP) were biosynthesized using neem cake, a by-product of the neem oil extraction from the seed kernels of Azadirachta indica. AgNP were characterized using a variety of biophysical methods, including UV-vis spectrophotometry, FTIR, SEM, EDX, and XRD analyses. Furthermore, the neem cake extract and the biosynthesized AgNP were tested for acute toxicity against larvae and pupae of the dengue vector Ae. aegypti. LC50 values achieved by the neem cake extract ranged from 106.53 (larva I) to 235.36 ppm (pupa), while AgNP LC50 ranged from 3.969 (larva I) to 8.308 ppm (pupa). In standard laboratory conditions, the predation efficiency of a Carassius auratus per day was 7.9 (larva II) and 5.5 individuals (larva III). Post-treatment with sub-lethal doses of AgNP, the predation efficiency was boosted to 9.2 (larva II) and 8.1 individuals (larva III). The genotoxic effect of AgNP was studied on C. auratus using the comet assay and micronucleus frequency test. DNA damage was evaluated on peripheral erythrocytes sampled at different time intervals from the treatment; experiments showed no significant damages at doses below 12 ppm. Overall, this research pointed out that neem cake-fabricated AgNP are easy to produce, stable over time, and can be employed at low dosages to reduce populations of dengue vectors, with moderate detrimental effects on non-target mosquito natural enemies.


Subject(s)
Aedes , Azadirachta/chemistry , Insect Vectors , Insecticides , Metal Nanoparticles , Aedes/drug effects , Aedes/genetics , Animals , Comet Assay , DNA Damage , Dengue/transmission , Glycerides , Goldfish/genetics , Goldfish/physiology , Humans , Insect Repellents , Insect Vectors/drug effects , Insect Vectors/genetics , Insecticides/pharmacology , Larva/drug effects , Metal Nanoparticles/toxicity , Micronucleus Tests , Plant Extracts/pharmacology , Plant Leaves , Predatory Behavior/drug effects , Pupa/drug effects , Silver , Terpenes
5.
Environ Sci Pollut Res Int ; 22(24): 20067-83, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26300364

ABSTRACT

Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.


Subject(s)
Aedes/drug effects , Anopheles/drug effects , Mosquito Control , Silver/pharmacology , Animals , Arbovirus Infections/prevention & control , Cyprinodontiformes/physiology , Female , Insect Vectors , Insecticides/pharmacology , Larva/drug effects , Malaria/prevention & control , Metal Nanoparticles/chemistry , Mimusops/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Predatory Behavior , Pupa/drug effects
6.
Parasitol Res ; 114(12): 4349-61, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26290219

ABSTRACT

Mosquitoes are blood-feeding insects serving as the most important vectors for spreading human pathogens and parasites. Dengue is a viral disease mainly vectored through the bite of Aedes mosquitoes. Its transmission has recently increased in urban and semi-urban areas of tropical and subtropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depend on effective vector control measures. Mangrove plants have been used in Indian traditional medicine for a wide array of purposes. In this research, we proposed a method for biosynthesis of antiviral and mosquitocidal silver nanoparticles (AgNP) using the aqueous extract of Bruguiera cylindrica leaves. AgNP were characterized using a variety of biophysical analyses, including UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Bruguiera cilyndrica aqueous extract and green-synthesized AgNP were tested against the primary dengue vector Aedes aegypti. AgNP were the most effective. LC50 values ranged from 8.93 ppm (larva I) to 30.69 ppm (pupa). In vitro experiments showed that 30 µg/ml of AgNP significantly inhibited the production of dengue viral envelope (E) protein in vero cells and downregulated the expression of dengue viral E gene. Concerning nontarget effects, we observed that the predation efficiency of Carassius auratus against A. aegypti was not affected by exposure at sublethal doses of AgNP. Predation in the control was 71.81 % (larva II) and 50.43 % (larva III), while in an AgNP-treated environment, predation was boosted to 90.25 and 76.81 %, respectively. Overall, this study highlights the concrete potential of green-synthesized AgNP in the fight against dengue virus. Furthermore, B. cylindrica-synthesized AgNP can be employed at low doses to reduce larval and pupal population of A. aegypti, without detrimental effects of predation rates of mosquito predators, such as C. auratus.


Subject(s)
Aedes/drug effects , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue/virology , Insecticides/pharmacology , Plant Extracts/chemistry , Rhizophoraceae/chemistry , Silver/pharmacology , Aedes/virology , Animals , Antiviral Agents/chemical synthesis , Dengue/transmission , Humans , Insecticides/chemical synthesis , Larva/drug effects , Metal Nanoparticles/chemistry , Plant Leaves/chemistry , Silver/chemistry
7.
Environ Sci Pollut Res Int ; 22(21): 17053-64, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26122577

ABSTRACT

Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this study, silver nanoparticles (AgN) were biosynthesized a cheap aqueous extract of T. asiatica leaves as reducing and stabilizing agent. The formation of nanoparticle was confirmed by surface Plasmon resonance band illustrated in UV-vis spectrophotometer. AgN were characterized by FTIR, SEM, EDX, and XRD analyses. AgN were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 25-30 nm. T. asiatica aqueous extract and green-synthesized AgN showed excellent larvicidal and pupicidal toxicity against the filariasis vector Culex quinqufasciatus, both in laboratory and field experiments. AgN LC50 ranged from 16.48 (I instar larvae) to 31.83 ppm (pupae). T. asiatica-synthesized were also highly effective in inhibiting growth of Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. Lastly, we evaluated if sublethal doses of nanoparticles affect predation rates of fishes, Poecilia reticulata, against C. quinquefasciatus. In AgN-contaminated environment, predation of guppies against mosquito larvae was slightly higher over normal laboratory conditions. Overall, this study highlighted that T. asiatica-synthesized AgN are easy to produce, stable over time, and may be employed at low dosages to reduce populations of filariasis vectors, without detrimental effects on predation rates of mosquito natural enemies.


Subject(s)
Anti-Bacterial Agents , Culex/drug effects , Insecticides , Nanoparticles , Predatory Behavior/drug effects , Rutaceae/chemistry , Silver , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Insecticides/chemistry , Insecticides/metabolism , Insecticides/pharmacology , Larva/drug effects , Nanoparticles/chemistry , Nanoparticles/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology , Poecilia , Silver/chemistry , Silver/metabolism , Silver/pharmacology
8.
Parasitol Res ; 114(10): 3657-64, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26122992

ABSTRACT

Each year, mosquito-borne diseases infect nearly 700 million people, resulting to more than 1 million deaths. In this study, we evaluated the larvicidal, pupicidal, and smoke toxicity of Senna occidentalis and Ocimum basilicum leaf extracts against the malaria vector Anopheles stephensi. Furthermore, the antiplasmodial activity of plant extracts was evaluated against chloroquine (CQ)-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. In larvicidal and pupicidal experiments, S. occidentalis LC50 ranged from 31.05 (I instar larvae) to 75.15 ppm (pupae), and O. basilicum LC50 ranged from 29.69 (I instar larvae) to 69 ppm (pupae). Smoke toxicity experiments conducted against adults showed that S. occidentalis and O. basilicum coils evoked mortality rates comparable to the pyrethrin-based positive control (38, 52, and 42%, respectively). In antiplasmodial assays, Senna occidentalis 50% inhibitory concentration (IC50) were 48.80 µg/ml (CQ-s) and 54.28 µg/ml (CQ-r), while O. basilicum IC50 were 68.14 µg/ml (CQ-s) and 67.27 µg/ml (CQ-r). Overall, these botanicals could be considered as potential sources of metabolites to build newer and safer malaria control tools.


Subject(s)
Anopheles/drug effects , Antimalarials/pharmacology , Insecticides/pharmacology , Ocimum basilicum/chemistry , Plasmodium falciparum/drug effects , Senna Plant/chemistry , Animals , Larva/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Pupa/drug effects
9.
Parasitol Res ; 114(6): 2243-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25782680

ABSTRACT

Nearly 1.4 billion people in 73 countries worldwide are threatened by lymphatic filariasis, a parasitic infection that leads to a disease commonly known as elephantiasis. Filariasis is vectored by mosquitoes, with special reference to the genus Culex. The main control tool against mosquito larvae is represented by treatments with organophosphates and insect growth regulators, with negative effects on human health and the environment. Recently, green-synthesized nanoparticles have been proposed as highly effective larvicidals against mosquito vectors. In this research, we attempted a reply to the following question: do green-synthesized nanoparticles affect predation rates of copepods against mosquito larvae? We proposed a novel method of seaweed-mediated synthesis of silver nanoparticles using the frond extract of Caulerpa scalpelliformis. The toxicity of the seaweed extract and silver nanoparticles was assessed against the filarial vector Culex quinquefasciatus. Then, we evaluated the predatory efficiency of the cyclopoid crustacean Mesocyclops longisetus against larval instars of C. quinquefasciatus in a nanoparticle-contaminated water environment. Green-synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In mosquitocidal assays, the LC50 values of the C. scalpelliformis extract against C. quinquefasciatus were 31.38 ppm (I), 46.49 ppm (II), 75.79 ppm (III), 102.26 ppm (IV), and 138.89 ppm (pupa), while LC50 of silver nanoparticles were 3.08 ppm, (I), 3.49 ppm (II), 4.64 ppm (III), 5.86 ppm (IV), and 7.33 ppm (pupa). The predatory efficiency of the copepod M. longisetus in the control treatment was 78 and 59% against I and II instar larvae of C. quinquefasciatus. In a nanoparticle-contaminated environment, predation efficiency was 84 and 63%, respectively. Predation was higher against first instar larvae over other instars. Overall, our study showed that seaweed-synthesized silver nanoparticles can be proposed in synergy with biological control agents against Culex larvae, since their use leads to little detrimental effects against aquatic predators, such as copepods.


Subject(s)
Copepoda/drug effects , Culex/drug effects , Insecticides/pharmacology , Metal Nanoparticles/chemistry , Seaweed/metabolism , Silver/pharmacology , Animals , Insecticides/chemistry , Insecticides/metabolism , Larva , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Predatory Behavior/drug effects , Silver/chemistry , X-Ray Diffraction
10.
Parasitol Res ; 114(4): 1519-29, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25653031

ABSTRACT

Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7%, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in medical entomology and parasitology, allowing us to propose A. vera-synthesized silver nanoparticles as effective candidates to develop newer and safer mosquitocidal control tools.


Subject(s)
Aloe/chemistry , Anopheles/drug effects , Anti-Bacterial Agents/pharmacology , Insecticides/pharmacology , Nanoparticles/toxicity , Plant Extracts/pharmacology , Silver/pharmacology , Animals , Anopheles/growth & development , Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Bacteria/growth & development , Insecticides/chemical synthesis , Larva/drug effects , Larva/growth & development , Malaria/transmission , Plant Extracts/chemical synthesis , Plant Leaves/chemistry , Pupa/drug effects , Pupa/growth & development , X-Ray Diffraction
11.
Parasitol Res ; 114(4): 1551-62, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25669140

ABSTRACT

Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10 × LC50) lead to A. aegypti larval reduction of 47.6%, 76.7% and 100%, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9%, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract and nanoparticles showed LC50 and LC90 of 174.14 and 6.68 ppm and 422.29 and 23.58 ppm, respectively. Overall, this study highlights that the possibility to employ P. niruri leaf extract and green-synthesized silver nanoparticles in mosquito control programs is concrete, since both are effective at lower doses if compared to synthetic products currently marketed, thus they could be an advantageous alternative to build newer and safer tools against dengue vectors.


Subject(s)
Aedes/drug effects , Insecticides/toxicity , Metal Nanoparticles/toxicity , Phyllanthus/chemistry , Plant Extracts/toxicity , Silver/toxicity , Aedes/growth & development , Animals , Dengue/transmission , Humans , Insect Vectors/drug effects , Insecticides/chemical synthesis , Larva/drug effects , Larva/growth & development , Metal Nanoparticles/chemistry , Mosquito Control , Plant Extracts/chemistry , Plant Leaves/chemistry , Silver/chemistry , Surface Plasmon Resonance
12.
Asian Pac J Trop Med ; 6(11): 847-53, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24083578

ABSTRACT

OBJECTIVE: To explore the larvicidal activity of Catharanthus roseus (C. roseus) leaf extract and Bacillus thuringiensis (B. thuringiensis) against the malarial vector Anopheles stephensi (An. stephensi), when being used alone or together. METHODS: The larvicidal activity was assayed at various concentrations under the laboratory and field conditions. The LC50 and LC90 values of the C. roseus leaf extract were determined by probit analysis. RESULTS: The plant extract showed larvicidal effects after 24 h of exposure; however, the highest larval mortality was found in the petroleum ether extract of C. roseus against the first to fourth instars larvae with LC50=3.34, 4.48, 5.90 and 8.17 g/L, respectively; B. thuringiensis against the first to fourth instars larvae with LC50=1.72, 1.93, 2.17 and 2.42 g/L, respectively; and the combined treatment with LC50=2.18, 2.41, 2.76 and 3.22 g/L, respectively. No mortality was observed in the control. CONCLUSIONS: The petroleum ether extract of C. roseus extract and B. thuringiensis have potential to be used as ideal eco-friendly agents for the control of An. stephensi in vector control programs. The combined treatment with this plant crude extract and bacterial toxin has better larvicidal efficacy against An. stephensi.


Subject(s)
Anopheles/drug effects , Bacillus thuringiensis/chemistry , Catharanthus/chemistry , Insect Control/methods , Malaria/prevention & control , Phytotherapy , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Disease Vectors , Humans , India , Insecticides/pharmacology , Larva/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...