Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theory Biosci ; 142(3): 275-290, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37474875

ABSTRACT

Advancement of new technologies such as laser, focused ultrasound, microwave and radio frequency for thermal therapy of skin tissue has increased numerous challenging situations in medical treatment. In this article, a new meticulous bio-heat transfer model based on memory-dependent derivative with dual-phase-lag has been developed under different thermal conditions such as thermal shock and harmonic-type heating. Laplace transform method is acquired to perceive the analytical consequences. Quantitative results are evaluated for displacement, strain and temperature along with stress distributions in time domain by adopting the technique of inverse Laplace transform. Impacts of the constituents of memory-dependent derivatives-kernel functions along with time-delay parameter are analysed on the studied fields (temperature, displacement, strain and stress) for both thermal conditions separately using computational results. It has been found that the insertion of the memory effect proves itself a unified model, and therefore, this model can better predict temperature field data for thermal treatment processes.


Subject(s)
Hot Temperature , Models, Biological , Thermal Conductivity , Skin
2.
Environ Geochem Health ; 42(6): 1789-1801, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32034621

ABSTRACT

The exposure to uranium (U) in the natural environment is primarily through ingestion (eating contaminated food and drinking water) and dermal (skin contact with U powders/wastes) pathways. This study focuses on the dose assessment for different age-groups using the USEPA model. A total of 156 drinking water samples were tested to know U level in the groundwater of the study region. Different age-groups were selected to determine the human health impact due to uranium exposure in the residing populations. To determine the relative importance of each input, a variance decomposition technique, i.e., Sobol sensitivity analysis, was used. Furthermore, different sample sizes were tested to obtain the optimal Sobol sensitivity indices. Three types of effects were evaluated: first-order effect (FOE), second-order effect (SOE) and total effect. The result of analysis revealed that 17% of the samples had U concentration above 30 µg l-1 of U, which is the recommended level by World Health Organization. The mean hazard index (HI) value for younger age-group was found to be less than 1, whereas the 95th percentile value of HI value exceeded for both age-groups. The mean annual effective dose of U for adults was found to be slightly higher than the recommended level of 0.1 m Sv year-1. This result signified that adults experienced relatively higher exposure dose than the children in this region. Sobol sensitivity analysis of FOE showed that the concentration of uranium (Cw) is the most sensitive input followed by intake rate (IR) and exposure frequency. Moreover, the value of SOE revealed that interaction effect of Cw - IR is the most sensitive input parameter for the assessment of oral health risk. On the other hand, dermal model showed Cw - F as the most sensitive interaction input. The larger value of SOE was also recorded for older age-group than for the younger group.


Subject(s)
Drinking Water/analysis , Groundwater/analysis , Uranium/analysis , Adult , Child , Humans , Risk Assessment , Water Pollutants, Radioactive/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...