Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurotrauma ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37905504

ABSTRACT

Identifying novel therapeutic approaches to promote recovery of neurological functions following spinal cord injury (SCI) remains a great unmet need. Nociceptive signaling in the acute phase of SCI has been shown to inhibit recovery of locomotor function and promote the development of chronic neuropathic pain. We therefore hypothesized that inhibition of nociceptive signaling in the acute phase of SCI might improve long-term functional outcomes in the chronic phase of injury. To test this hypothesis, we took advantage of a selective strategy utilizing AAV6 to deliver inhibitory (hM4Di) Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to nociceptors of the L4-L6 dorsal root ganglia to evaluate the effects of transient nociceptor silencing on long-term sensory and motor functional outcomes in a rat thoracic contusion SCI model. Following hM4Di-mediated nociceptor inhibition from 0-14 days post-SCI, we conducted behavioral assessments until 70 days post-SCI, then performed histological assessments of lesion severity and axon plasticity. Our results show highly selective expression of hM4Di within small diameter nociceptors including calcitonin gene-related peptide (CGRP)+ and IB4-binding neurons. Expression of hM4Di in less than 25% of nociceptors was sufficient to increase hindlimb thermal withdrawal latency in naïve rats. Compared with subjects who received AAV-yellow fluorescent protein (YFP; control), subjects who received AAV-hM4Di exhibited attenuated thermal hyperalgesia, greater coordination, and improved hindlimb locomotor function. However, treatment did not impact the development of cold allodynia or mechanical hyperalgesia. Histological assessments of spinal cord tissue suggested trends toward reduced lesion volume, increased neuronal sparing and increased CGRP+ axon sprouting in hM4Di-treated animals. Together, these findings suggest that nociceptor silencing early after SCI may promote beneficial plasticity in the acute phase of injury that can impact long-term functional outcomes, and support previous work highlighting primary nociceptors as possible therapeutic targets for pain management after SCI.

2.
Nat Commun ; 13(1): 5380, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104357

ABSTRACT

Despite advancement of neural progenitor cell transplantation to spinal cord injury clinical trials, there remains a lack of understanding of how biological sex of transplanted cells influences outcomes after transplantation. To address this, we transplanted GFP-expressing sex-matched, sex-mismatched, or mixed donor cells into sites of spinal cord injury in adult male and female mice. Biological sex of the donor cells does not influence graft neuron density, glial differentiation, formation of the reactive glial cell border, or graft axon outgrowth. However, male grafts in female hosts feature extensive hypervascularization accompanied by increased vascular diameter and perivascular cell density. We show greater T-cell infiltration within male-to-female grafts than other graft types. Together, these findings indicate a biological sex-specific immune response of female mice to male donor cells. Our work suggests that biological sex should be considered in the design of future clinical trials for cell transplantation in human injury.


Subject(s)
Neural Stem Cells , Spinal Cord Injuries , Animals , Female , Humans , Male , Mice , Neural Stem Cells/transplantation , Neuroglia , Neurons , Spinal Cord Injuries/therapy , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...