Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Plants (Basel) ; 13(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611552

ABSTRACT

Winter sprouting potential and red rot resistance are two key parameters for successful sugarcane breeding in the subtropics. However, the cultivated sugarcane hybrids had a narrow genetic base; hence, the present study was planned to evaluate the Erianthus procerus genome introgressed Saccharum hybrids for their ratooning potential under subtropical climates and red rot tolerance under tropical and subtropical climates. A set of 15 Erianthus procerus derived hybrids confirmed through the 5S rDNA marker, along with five check varieties, were evaluated for agro-morphological, quality, and physiological traits for two years (2018-2019 and 2019-2020) and winter sprouting potential for three years (2018-2019, 2019-2020, and 2020-2021). The experimental material was also tested against the most prevalent isolates of the red rot pathogen in tropical (Cf671 and Cf671 + Cf9401) and subtropical regions (Cf08 and Cf09). The E. procerus hybrid GU 12-19 had the highest winter sprouting potential, with a winter sprouting index (WSI) of 10.6, followed by GU 12-22 with a WSI of 8.5. The other top-performing hybrids were as follows: GU 12-21 and GU 12-29 with a WSI of 7.2 and 6.9, respectively. A set of nine E. procerus-derived hybrids, i.e., GU04 (28) EO-2, GU12-19, GU12-21, GU12-22, GU12-23, GU12-26, GU12-27, GU12-30, and GU12-31, were resistant to the most prevalent isolates of red rot in both tropical and subtropical conditions. The association analysis revealed significant correlations between the various traits, particularly the fibre content, with a maximum number of associations, which indicates its multifaceted impact on sugarcane characteristics. Principal component analysis (PCA) summarised the data, explaining 57.6% of the total variation for the measured traits and genotypes, providing valuable insights into the performance and characteristics of the Erianthus procerus derived hybrids under subtropical climates. The anthocyanin content of Erianthus procerus hybrids was better than the check varieties, ranging from 0.123 to 0.179 (2018-2019) and 0.111 to 0.172 (2019-2020); anthocyanin plays a vital role in mitigating cold injury, acting as an antioxidant in cool weather conditions, particularly in sugarcane. Seven hybrids recorded a more than 22% fibre threshold, indicating their industrial potential. These hybrids could serve as potential donors for cold tolerance and a high ratooning ability, along with red rot resistance, under subtropical climates.

2.
BMC Plant Biol ; 24(1): 198, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38500032

ABSTRACT

BACKGROUND: Energy canes are viable feedstocks for biomass industries due to their high biomass production potential, lower susceptibility to insects and diseases, better ability to adapt to extreme conditions and clean bioenergy. Interspecific hybrids (ISH) and intergeneric hybrids (IGH) have great potential to meet the growing demand of biomass, biomass-derived energy and feedstock. RESULTS: In this study, two types of energy canes, Type I and Type II, derived from S. spontaneum and E. arundinaceous background were evaluated for high biomass, fiber and bioenergy potential under subtropical climate along with the check varieties Co 0238 and CoS 767. Out of 18 energy canes studied, six energy canes, viz., SBIEC11008 (204.15 t/ha), SBIEC11005 (192.93 t/ha), SBIEC13008 (201.26 t/ha), SBIEC13009 (196.58 t/ha), SBIEC13002 (170.15 t/ha), and SBIEC13007 (173.76 t/ha), consistently outperformed the check varieties under Type-I, whereas in type-II, SBIEC11004 (225.78 t/ha), SBIEC11006 (184.89 t/ha), and SBIEC14006 (184.73 t/ha) energy canes produced significantly higher biomass than commercial checks, indicating their superior potential for cogeneration. Estimated energy output from the energy canes (700-1300 GJ/ha/year) exceeded the range of co-varieties (400-500 GJ/ha/year) and energy utilization efficiency in plants and ratoon crops for energy canes viz., SBIEC11008 (3%, 1.97%), SBIEC14006 (1.93%, 2.4%), SBIEC11005 (1.7%, 1.9%), and SBIEC11001 (1.01%, 1.03%), was higher than best checks Co 0238 (0.77, 0.9%). Additionally, energy canes SBIEC 13001 (22.35%), SBIEC 11008 (22.50%), SBIEC 14006 (28.54%), SBIEC 11004 (30.17%) and SBIEC 11001 (27.03%) had higher fiber contents than the co-varieties (12.45%). CONCLUSION: The study gives insight about the potential energy canes for higher biomass and energy value. These energy cane presents a vital option to meet the future demand of bioenergy, fiber and fodder for biomass due to their versatile capacity to grow easily under marginal lands without competing with cultivated land worldwide.


Subject(s)
Saccharum , Biomass
3.
Genes (Basel) ; 14(6)2023 05 25.
Article in English | MEDLINE | ID: mdl-37372327

ABSTRACT

Plant nuclear factor (NF-Y) is a transcriptional activating factor composed of three subfamilies: NF-YA, NF-YB, and NF-YC. These transcriptional factors are reported to function as activators, suppressors, and regulators under different developmental and stress conditions in plants. However, there is a lack of systematic research on the NF-Y gene subfamily in sugarcane. In this study, 51 NF-Y genes (ShNF-Y), composed of 9 NF-YA, 18 NF-YB, and 24 NF-YC genes, were identified in sugarcane (Saccharum spp.). Chromosomal distribution analysis of ShNF-Ys in a Saccharum hybrid located the NF-Y genes on all 10 chromosomes. Multiple sequence alignment (MSA) of ShNF-Y proteins revealed conservation of core functional domains. Sixteen orthologous gene pairs were identified between sugarcane and sorghum. Phylogenetic analysis of NF-Y subunits of sugarcane, sorghum, and Arabidopsis showed that ShNF-YA subunits were equidistant while ShNF-YB and ShNF-YC subunits clustered distinctly, forming closely related and divergent groups. Expression profiling under drought treatment showed that NF-Y gene members were involved in drought tolerance in a Saccharum hybrid and its drought-tolerant wild relative, Erianthus arundinaceus. ShNF-YA5 and ShNF-YB2 genes had significantly higher expression in the root and leaf tissues of both plant species. Similarly, ShNF-YC9 had elevated expression in the leaf and root of E. arundinaceus and in the leaf of a Saccharum hybrid. These results provide valuable genetic resources for further sugarcane crop improvement programs.


Subject(s)
Saccharum , Saccharum/genetics , Saccharum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Genome, Plant , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...