Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 60(1): 283-291, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36618038

ABSTRACT

The polysaccharides were isolated from apple pomace by hot-water extraction, and their anti-fatigue activity was evaluated in C2C12 muscle myoblasts and male Kunming mice. The purified polysaccharides from apple pomace (PAP) have a molecular weight of 1.74 × 105 Da and were composed of mannose, rhamnose, glucose, galactose and arabinose. In C2C12 myoblasts, PAP showed no cytotoxicity in the concentrations of 0-300 µg/ml. PAP treatment increased the glycogen content, while the ATP content was not affected in C2C12 myoblasts. Further investigation found that the activity and gene expression of glycogen synthase, rather than glycogen phosphorylase, were upregulated by PAP treatment. The studies in vivo showed that PAP treatment did not affect the food intake and weight again in mice. Importantly, PAP prolonged the exhaustive swimming time, increased hepatic and skeletal muscle glycogen levels, and effectively inhibited the accumulation of blood lactic and blood urea nitrogen in mice. Taken together, the results suggested that PAP exhibit anti-fatigue activity in vitro and in vivo through increasing glycogen content.

3.
Bull Environ Contam Toxicol ; 108(1): 129-135, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34652458

ABSTRACT

In this study, pot-culture experiments were conducted to investigate the single effect of Cd, PCBs, and the combined effect of Cd-PCBs with Tagetes patula L. The study highlights that the minimum concentration of PCBs (100 µg kg-1) could enable the growth of the plant with an increase in biomass by 27.76% when compared with the control. In all the experiments performed, the Cd concentrations over the surface parts were found to be above 100 mg kg-1. Significant positive correlations were observed between the Cd and PCBs concentrations accumulated in tissues of the soil and plants (p < 0.05). T. patula exhibited high tolerance to Cd and PCBs, and the plant promoted the removal rate of PCBs. The removal rates of PCB18 and PCB28 were up to 42.72 and 42.29%, respectively. The study highlights the potential and suitability of T. patula for phytoremediation of Cd and PCBs in contaminated soils.


Subject(s)
Polychlorinated Biphenyls , Soil Pollutants , Tagetes , Biodegradation, Environmental , Cadmium/analysis , Soil , Soil Pollutants/analysis
4.
Environ Sci Pollut Res Int ; 21(16): 9569-77, 2014.
Article in English | MEDLINE | ID: mdl-24838258

ABSTRACT

Attaining sustainable agriculture is a key goal in many parts of the world. The increased environmental awareness and the ongoing attempts to execute agricultural practices that are economically feasible and environmentally safe promote the use of hydroponic cultivation. Hydroponics is a technology for growing plants in nutrient solutions with or without the use of artificial medium to provide mechanical support. Major problems for hydroponic cultivation are higher operational cost and the causing of pollution due to discharge of waste nutrient solution. The nutrient effluent released into the environment can have negative impacts on the surrounding ecosystems as well as the potential to contaminate the groundwater utilized by humans for drinking purposes. The reuse of non-recycled, nutrient-rich hydroponic waste solution for growing plants in greenhouses is the possible way to control environmental pollution. Many researchers have successfully grown several plant species in hydroponic waste solution with high yield. Hence, this review addresses the problems associated with the release of hydroponic waste solution into the environment and possible reuse of hydroponic waste solution as an alternative resource for agriculture development and to control environmental pollution.


Subject(s)
Hydroponics , Recycling , Waste Disposal, Fluid/methods , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL
...