Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 191(8): 460, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987355

ABSTRACT

The facile sonochemical synthesis is reported of zinc cobalt oxide (ZnCo2O4) composited with carbon nanofiber (CNF). Structural, chemical, and morphological were characterized by X-ray diffraction (XRD), X-ray photoluminescent spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmittance electron microscopy (TEM), respectively. ZnCo2O4/CNF-modified GCE was applied to the detection of bisphenol A (BPA). The modified GCE shows enhanced sensing performance towards BPA, which includes a linear range (0.2 to 120 µM L-1) alongside a low limit of detection (38.2 nM L-1), low interference, and good stability. Detection of lower concentrations of BPA enables real sample analysis in the food industries (milk, orange juice, yogurt, tap water, and baby feeding bottles). Surprisingly, the BPA was detected in milk 510 nM L-1, orange juice 340 nM L-1, yogurt 1050 nM L-1, and tap water 140 nM L-1. Moreover, an interaction mechanism between the BPA analyte and ZnCo2O4 was discussed.


Subject(s)
Benzhydryl Compounds , Carbon , Cobalt , Milk , Nanofibers , Phenols , Benzhydryl Compounds/analysis , Phenols/analysis , Phenols/chemistry , Cobalt/chemistry , Carbon/chemistry , Milk/chemistry , Nanofibers/chemistry , Food Contamination/analysis , Animals , Oxides/chemistry , Limit of Detection , Electrochemical Techniques/methods , Fruit and Vegetable Juices/analysis , Green Chemistry Technology/methods , Yogurt/analysis
2.
ACS Sens ; 3(9): 1822-1830, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30168710

ABSTRACT

Polyaniline (PANI) functionalized multiwall carbon nanotubes (MWCNTs) were prepared via in situ chemical polymerization process of aniline, in which MWCNTs were spray coated on the fabric for wearable ammonia sensor. Structural, morphological, thermal properties and wettability were analyzed by scanning electron microscope, X-ray diffraction, Raman analysis and contact angle measurement. No substantial change in base resistance of MWCNTs/PANI fabric sensor was observed for a wide range of bending (from 90° to 270°) shows excellent wearability. The sensors were exposed to 20-100 ppm ammonia vapor at room temperature. It was observed that the sensing response of PANI coated MWCNTs was enhanced than MWCNTs and PANI. The sensor has the capability to detect ammonia with high sensitivity (92% for100 ppm), excellent selectivity quick response (9 s), and recovery time (30 s). The lower detection limit (LOD) for the MWCNTs/PANI fabric sensor was found to be 200 ppb. The influence of humidity on sensing parameters was studied. Sensing response and resistance of sensor have shown excellent stability after one month. We observed that PANI have a dual role in enhancing flexibility as well as improve the sensor performance toward ammonia. The results reveal the potential application of fabric based sensor for monitoring NH3 gas under ambient conditions.


Subject(s)
Ammonia/analysis , Aniline Compounds/chemistry , Nanotubes, Carbon/chemistry , Wearable Electronic Devices , Aniline Compounds/chemical synthesis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Gases/analysis , Limit of Detection , Polymerization , Polypropylenes/chemistry , Reproducibility of Results , Temperature , Textiles
3.
J Nanosci Nanotechnol ; 18(5): 3536-3542, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29442863

ABSTRACT

An investigation on varying experimental parameters such as solution quantity (2.5, 5 and 7.5 mL) and reaction time (15, 30, 45 and 60 min) was carried out for the production of high-quality multiwalled carbon nanotubes (MWCNTs) in one step pyrolysis. Structural analysis revealed the uniform diameter distribution and the length of nanotubes in the range of 60-80 nm and 0.4-2 µm, respectively. Raman and X-ray diffraction analysis showed a remarkable reduction in defect density with increase in graphitization degree, upon increasing the solution volume and reaction time. MWCNTs prepared at higher solution quantity (7.5 mL) with higher reaction time (60 min) showed higher crystallinity (70% graphitization) and lower defect density (ID/IG: 0.56). The attainment in equilibrium of evaporation cum precipitation in formation of high quality nanotubes structure is evaluated. An effective resupplying of condensed precursors by re-evaporation leads for the achievement of low defect density nanotubes with higher product yield is achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...