Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Curr Diabetes Rev ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38798206

ABSTRACT

Recent studies have found that a link between people with type 1 diabetes mellitus (T1DM) are at higher risk of morbidity as well as mortality from COVID-19 infection, indicating a need for vaccination. T1DM appears to impair innate and adaptive immunity. The overabundance of pro-inflammatory cytokines produced in COVID-19 illness that is severe and potentially fatal is known as a "cytokine storm." Numerous cohorts have revealed chronic inflammation as a key risk factor for unfavorable COVID-19 outcomes. TNF-α, interleukin (IL)-1a, IL-1, IL-2, IL-6, and other cytokines were found in higher concentrations in patients with T1DM. Even more importantly, oxidative stress contributes significantly to the severity and course of COVID- 19's significant role in the progression and severity of COVID-19 diseases. Severe glucose excursions, a defining characteristic of type 1 diabetes, are widely recognized for their potent role as mediating agents of oxidative stress via several routes, such as heightened production of advanced glycation end products (AGEs) and activation of protein kinase C (PKC). Furthermore, persistent endothelial dysfunction and hypercoagulation found in T1DM may impair microcirculation and endothelium, which could result in the development of various organ failure and acute breathing syndrome.

2.
3 Biotech ; 14(6): 150, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725866

ABSTRACT

Calcium-dependent protein kinase (CDPK) is member of one of the most important signalling cascades operating inside the plant system due to its peculiar role as thermo-sensor. Here, we identified 28 full length putative CDPKs from wheat designated as TaCDPK (1-28). Based on digital gene expression, we cloned full length TaCPK-1 gene of 1691 nucleotides with open reading frame (ORF) of 548 amino acids (accession number OP125853). The expression of TaCPK-1 was observed maximum (3.1-fold) in leaf of wheat cv. HD2985 (thermotolerant) under T2 (38 ± 3 °C, 2 h), as compared to control. A positive correlation was observed between the expression of TaCPK-1 and other stress-associated genes (MAPK6, CDPK4, HSFA6e, HSF3, HSP17, HSP70, SOD and CAT) involved in thermotolerance. Global protein kinase assay showed maximum activity in leaves, as compared to root, stem and spike under heat stress. Immunoblot analysis showed abundance of CDPK protein in wheat cv. HD2985 (thermotolerant) in response to T2 (38 ± 3 °C, 2 h), as compared to HD2329 (thermosusceptible). Calcium ion (Ca2+), being inducer of CDPK, showed strong Ca-signature in the leaf tissue (Ca-622 ppm) of thermotolerant wheat cv. under heat stress, whereas it was minimum (Ca-201 ppm) in spike tissue. We observed significant variations in the ionome of wheat under HS. To conclude, TaCPK-1 plays important role in triggering signaling network and in modulation of HS-tolerance in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03989-6.

3.
PLoS One ; 19(5): e0302870, 2024.
Article in English | MEDLINE | ID: mdl-38776345

ABSTRACT

The systematic identification of insertion/deletion (InDel) length polymorphisms from the entire lentil genome can be used to map the quantitative trait loci (QTL) and also for the marker-assisted selection (MAS) for various linked traits. The InDels were identified by comparing the whole-genome resequencing (WGRS) data of two extreme bulks (early- and late-flowering bulk) and a parental genotype (Globe Mutant) of lentil. The bulks were made by pooling 20 extreme recombinant inbred lines (RILs) each, derived by crossing Globe Mutant (late flowering parent) with L4775 (early flowering parent). Finally, 734,716 novel InDels were identified, which is nearly one InDel per 5,096 bp of lentil genome. Furthermore, 74.94% of InDels were within the intergenic region and 99.45% displayed modifier effects. Of these, 15,732 had insertions or deletions of 20 bp or more, making them amenable to the development of PCR-based markers. An InDel marker I-SP-356.6 (chr. 3; position 356,687,623; positioned 174.5 Kb from the LcFRI gene) was identified as having a phenotypic variance explained (PVE) value of 47.7% for earliness when validated in a RIL population. Thus, I-SP-356.6 marker can be deployed in MAS to facilitate the transfer of the earliness trait to other elite late-maturing cultivars. Two InDel markers viz., I-SP-356.6 and I-SP-383.9 (chr. 3; linked to LcELF3a gene) when tested in 9 lentil genotypes differing for maturity duration, clearly distinguished three early (L4775, ILL7663, Precoz) and four late genotypes (Globe Mutant, MFX, L4602, L830). However, these InDels could not be validated in two genotypes (L4717, L4727), suggesting either absence of polymorphism and/or presence of other loci causing earliness. The identified InDel markers can act as valuable tools for MAS for the development of early maturing lentil varieties.


Subject(s)
Genome, Plant , Genotype , INDEL Mutation , Lens Plant , Quantitative Trait Loci , Lens Plant/genetics , Lens Plant/growth & development , Genetic Markers , Polymerase Chain Reaction/methods , Chromosome Mapping/methods
4.
Physiol Mol Biol Plants ; 30(3): 497-511, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38633271

ABSTRACT

Ziziphus nummularia an elite heat-stress tolerant shrub, grows in arid regions of desert. However, its molecular mechanism responsible for heat stress tolerance is unexplored. Therefore, we analysed whole transcriptome of Jaisalmer (heat tolerant) and Godhra (heat sensitive) genotypes of Z. nummularia to understand its molecular mechanism responsible for heat stress tolerance. De novo assembly of 16,22,25,052 clean reads yielded 276,029 transcripts. A total of 208,506 unigenes were identified which contains 4290 and 1043 differentially expressed genes (DEG) in TGO (treated Godhra at 42 °C) vs. CGO (control Godhra) and TJR (treated Jaisalmer at 42 °C) vs. CJR (control Jaisalmer), respectively. A total of 987 (67 highly enriched) and 754 (34 highly enriched) pathways were obsorved in CGO vs. TGO and CJR vs. TJR, respectively. Antioxidant pathways and TFs like Homeobox, HBP, ARR, PHD, GRAS, CPP, and E2FA were uniquely observed in Godhra genotype and SET domains were uniquely observed in Jaisalmer genotype. Further transposable elements were highly up-regulated in Godhra genotype but no activation in Jaisalmer genotype. A total of 43,093 and 39,278 simple sequence repeats were identified in the Godhra and Jaisalmer genotypes, respectively. A total of 10 DEGs linked to heat stress were validated in both genotypes for their expression under different heat stresses using quantitative real-time PCR. Comparing expression patterns of the selected DEGs identified ClpB1 as a potential candidate gene for heat tolerance in Z. nummularia. Here we present first characterized transcriptome of Z. nummularia in response to heat stress for the identification and characterization of heat stress-responsive genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01431-y.

5.
Cells ; 13(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474396

ABSTRACT

The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.


Subject(s)
COVID-19 , Thrombosis , Humans , COVID-19/pathology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Endoplasmic Reticulum Chaperone BiP , Endothelial Cells/metabolism , In Situ Hybridization, Fluorescence , Peptidyl-Dipeptidase A/metabolism , Lung/metabolism , Thrombosis/pathology , Endothelium/metabolism , Homeostasis
6.
Protein Sci ; 33(4): e4956, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511511

ABSTRACT

Copper ion dys-homeostasis is linked to neurodegenerative diseases involving amyloid formation. Even if many amyloidogenic proteins can bind copper ions as monomers, little is known about copper interactions with the resulting amyloid fibers. Here, we investigate copper interactions with α-synuclein, the amyloid-forming protein in Parkinson's disease. Copper (Cu(II)) binds tightly to monomeric α-synuclein in vitro involving the N-terminal amine and the side chain of His50. Using purified protein and biophysical methods in vitro, we reveal that copper ions are readily incorporated into the formed amyloid fibers when present at the start of aggregation reactions, and the metal ions also bind if added to pre-formed amyloids. Efficient incorporation is observed for α-synuclein variants with perturbation of either one of the high-affinity monomer copper-binding residues (i.e., N-terminus or His50) whereas a variant with both N-terminal acetylation and His50 substituted with Ala does not incorporate any copper into the amyloids. Both the morphology of the resulting α-synuclein amyloids (amyloid fiber pitch, secondary structure, proteinase sensitivity) and the copper chemical properties (redox activity, chemical potential) are altered when copper is incorporated into amyloids. We speculate that copper chelation by α-synuclein amyloids contributes to the observed copper dys-homeostasis (e.g., reduced bioavailable levels) in Parkinson's disease patients. At the same time, amyloid-copper interactions may be protective to neuronal cells as they will shield aberrantly free copper ions from promotion of toxic reactive oxygen species.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Copper/chemistry , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Ions
7.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542297

ABSTRACT

Research on GM1 ganglioside and its neuroprotective role in Parkinson's disease (PD), particularly in mitigating the aggregation of α-Synuclein (aSyn), is well established across various model organisms. This essential molecule, GM1, is intimately linked to preventing aSyn aggregation, and its deficiency is believed to play a key role in the initiation of PD. In our current study, we attempted to shed light on the cytosolic interactions between GM1 and aSyn based on previous reports demonstrating gangliosides and monomeric aSyn to be present in neuronal cytosol. Native-PAGE and Western blot analysis of neuronal cytosol from mouse brains demonstrated the presence of both GM1 and monomeric aSyn in the neuronal cytosol of normal mouse brain. To demonstrate that an adequate level of GM1 prevents the aggregation of aSyn, we used NG108-15 and SH-SY5Y cells with and without treatment of 1-phenyl-2-palmitoyl-3-morpholino-1-propanol (PPMP), which inhibits the synthesis/expression of GM1. Cells treated with PPMP to reduce GM1 expression showed a significant increase in the formation of aggregated aSyn compared to untreated cells. We thus demonstrated that sufficient GM1 prevents the aggregation of aSyn. For this to occur, aSyn and GM1 must show proximity within the neuron. The present study provides evidence for such co-localization in neuronal cytosol, which also facilitates the inverse interaction revealed in studies with the two cell types above. This adds to the explanation of how GM1 prevents the aggregation of aSyn and onset of Parkinson's disease.


Subject(s)
Neuroblastoma , Parkinson Disease , Animals , Humans , Mice , alpha-Synuclein/metabolism , Cytosol/metabolism , G(M1) Ganglioside/metabolism , Neuroblastoma/metabolism , Neurons/metabolism , Parkinson Disease/metabolism
8.
PeerJ ; 12: e16722, 2024.
Article in English | MEDLINE | ID: mdl-38406271

ABSTRACT

Quantitative trait loci (QTL) mapping is used for the precise localization of genomic regions regulating various traits in plants. Two major QTLs regulating Soil Plant Analysis Development (SPAD) value (qSPAD-7-1) and trichome density (qTric-7-2) in mungbean were identified using recombinant inbred line (RIL) populations (PMR-1×Pusa Baisakhi) on chromosome 7. Functional analysis of QTL region identified 35 candidate genes for SPAD value (16 No) and trichome (19 No) traits. The candidate genes regulating trichome density on the dorsal leaf surface of the mungbean include VRADI07G24840, VRADI07G17780, and VRADI07G15650, which encodes for ZFP6, TFs bHLH DNA-binding superfamily protein, and MYB102, respectively. Also, candidate genes having vital roles in chlorophyll biosynthesis are VRADIO7G29860, VRADIO7G29450, and VRADIO7G28520, which encodes for s-adenosyl-L-methionine, FTSHI1 protein, and CRS2-associated factor, respectively. The findings unfolded the opportunity for the development of customized genotypes having high SPAD value and high trichome density having a possible role in yield and mungbean yellow vein mosaic India virus (MYMIV) resistance in mungbean.


Subject(s)
Quantitative Trait Loci , Vigna , Quantitative Trait Loci/genetics , Vigna/genetics , Chromosome Mapping , Genotype , Soil , Trichomes/genetics , Plant Leaves/genetics
9.
Nat Commun ; 15(1): 1142, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326301

ABSTRACT

The lasting threat of viral pandemics necessitates the development of tailorable first-response antivirals with specific but adaptive architectures for treatment of novel viral infections. Here, such an antiviral platform has been developed based on a mixture of hetero-peptides self-assembled into functionalized ß-sheets capable of specific multivalent binding to viral protein complexes. One domain of each hetero-peptide is designed to specifically bind to certain viral proteins, while another domain self-assembles into fibrils with epitope binding characteristics determined by the types of peptides and their molar fractions. The self-assembled fibrils maintain enhanced binding to viral protein complexes and retain high resilience to viral mutations. This method is experimentally and computationally tested using short peptides that specifically bind to Spike proteins of SARS-CoV-2. This platform is efficacious, inexpensive, and stable with excellent tolerability.


Subject(s)
COVID-19 , Humans , Peptides/chemistry , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Viral Proteins , Spike Glycoprotein, Coronavirus/metabolism
10.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338937

ABSTRACT

Despite the availability of antibiotic therapy, tuberculosis (TB) is prevailing as a leading killer among human infectious diseases, which highlights the need for better intervention strategies to control TB. Several animal model systems, including mice, guinea pigs, rabbits, and non-human primates have been developed and explored to understand TB pathogenesis. Although each of these models contributes to our current understanding of host-Mycobacterium tuberculosis (Mtb) interactions, none of these models fully recapitulate the pathological spectrum of clinical TB seen in human patients. Recently, humanized mouse models are being developed to improvise the limitations associated with the standard mouse model of TB, including lack of necrotic caseation of granulomas, a pathological hallmark of TB in humans. However, the spatial immunopathology of pulmonary TB in humanized mice is not fully understood. In this study, using a novel humanized mouse model, we evaluated the spatial immunopathology of pulmonary Mtb infection with a low-dose inoculum. Humanized NOD/LtSscidIL2Rγ null mice containing human fetal liver, thymus, and hematopoietic CD34+ cells and treated with human cytokines were aerosol challenged to implant <50 pathogenic Mtb (low dose) in the lungs. At 2 and 4 weeks post infection, the tissue bacterial load, disease pathology, and spatial immunohistology were determined in the lungs, liver, spleen, and adipose tissue using bacteriological, histopathological, and immunohistochemical techniques. The results indicate that implantation of <50 bacteria can establish a progressive disease in the lungs that transmits to other tissues over time. The disease pathology in organs correspondingly increased with the bacterial load. A distinct spatial distribution of T cells, macrophages, and natural killer cells were noted in the lung granulomas. The kinetics of spatial immune cell distribution were consistent with the disease pathology in the lungs. Thus, the novel humanized model recapitulates several key features of human pulmonary TB granulomatous response and can be a useful preclinical tool to evaluate potential anti-TB drugs and vaccines.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Rabbits , Animals , Mice , Guinea Pigs , Mice, Inbred NOD , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/pathology , Tuberculosis/microbiology , Lung/pathology , Granuloma/pathology
11.
Curr Diabetes Rev ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351690

ABSTRACT

Diseases that are caused by a person's everyday habits are known as lifestyle diseases. Habits that devoid people of their daily activities and direct them towards a sedentary lifestyle cause numerous health problems that can lead to non-communicable diseases. Noncommunicable diseases, or NCDs, kill more than 41 million individuals per year, accounting for 74% of all deaths worldwide. In India, 63% of all fatalities were attributed to NCDs in 2016, with 23% of those deaths being early. Compared to the current state of various lifestyle diseases, the prevalence of adult obesity, hypertension, and other lifestyle disorders in Punjab was determined by the National Family Healthcare Surveys (NFHS-4 and NFHS-5). NFHS-5 survey conducted in Punjab was used to examine the general distribution of these disorders. The National Family Health Survey 2019-21 (NFHS-5), the fifth survey in the NFHS series, provides information on the population, health, and nutritional status of all states and union territories (UT) in India. NFHS-5 also gives district-level estimates for several crucial variables, similar to the NFHS-4 survey 2015-16.

13.
Curr Diabetes Rev ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38275038

ABSTRACT

Diabetic retinopathy (DR) is the most common microvascular complication of diabetes that damages the retina, leading to blindness. People with type 1 diabetes are at greater risk of developing DR than people with type 2 diabetes. Diabetic retinopathy may be divided into two primary categories: proliferative diabetic retinopathy (PDR) and non-proliferative diabetic retinopathy (NPDR). There are multiple risk factors for the onset and progression of diabetic retinopathy, such as hypertension, obesity, smoking, duration of diabetes, and genetics. Numerous investigations have evaluated the levels of a wide range of inflammatory chemokines within DR patients' serum, vitreous, and aqueous fluids. In diabetic retinopathy, the vitreous fluid exhibited rises in angiogenic factors like platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF) or declines in antiangiogenic factors like pigment epithelium-derived factor (PEDF). For prevention of diabetic retinopathy, more physical activity as well as less sedentary behavior were linked to a reduced likelihood of DR. Supplementing with nutraceuticals containing vitamins (B1, B2, B6, B12, C, D, E, and l-methyl folate) and mineral (zinc) can help decrease or avoid an outbreak of DR. Only laser photocoagulation and Anti-vascular endothelial growth factor (Anti-VEGF) injections are advised as favorable therapies in severe retinopathy. When it comes to treating DR's VEGF levels, inflammation, oxidative stress, apoptosis, and angiogenesis, traditional Chinese medicine (TCM) has an excellent future.

14.
PeerJ ; 12: e16653, 2024.
Article in English | MEDLINE | ID: mdl-38288464

ABSTRACT

Yellow mosaic disease (YMD) remains a major constraint in mungbean (Vigna radiata (L.)) production; while short-duration genotypes offer multiple crop cycles per year and help in escaping terminal heat stress, especially during summer cultivation. A comprehensive genotyping by sequencing (GBS)-based genome-wide association studies (GWAS) analysis was conducted using 132 diverse mungbean genotypes for traits like flowering time, YMD resistance, soil plant analysis development (SPAD) value, trichome density, and leaf area. The frequency distribution revealed a wide range of values for all the traits. GBS studies identified 31,953 high-quality single nucleotide polymorphism (SNPs) across all 11 mungbean chromosomes and were used for GWAS. Structure analysis revealed the presence of two genetically distinct populations based on ΔK. The linkage disequilibrium (LD) varied throughout the chromosomes and at r2 = 0.2, the mean LD decay was estimated as 39.59 kb. Two statistical models, mixed linear model (MLM) and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) identified 44 shared SNPs linked with various candidate genes. Notable candidate genes identified include FPA for flowering time (VRADI10G01470; chr. 10), TIR-NBS-LRR for mungbean yellow mosaic India virus (MYMIV) resistance (VRADI09G06940; chr. 9), E3 ubiquitin-protein ligase RIE1 for SPAD value (VRADI07G28100; chr. 11), WRKY family transcription factor for leaf area (VRADI03G06560; chr. 3), and LOB domain-containing protein 21 for trichomes (VRADI06G04290; chr. 6). In-silico validation of candidate genes was done through digital gene expression analysis using Arabidopsis orthologous (compared with Vigna radiata genome). The findings provided valuable insight for marker-assisted breeding aiming for the development of YMD-resistant and early-maturing mungbean varieties.


Subject(s)
Vigna , Vigna/genetics , Genome-Wide Association Study , Genotype , Bayes Theorem , Plant Breeding
15.
Nat Commun ; 15(1): 826, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280874

ABSTRACT

Silicon microring modulator plays a critical role in energy-efficient optical interconnect and optical computing owing to its ultra-compact footprint and capability for on-chip wavelength-division multiplexing. However, existing silicon microring modulators usually require more than 2 V of driving voltage (Vpp), which is limited by both material properties and device structures. Here, we present a metal-oxide-semiconductor capacitor microring modulator through heterogeneous integration between silicon photonics and titanium-doped indium oxide, which is a high-mobility transparent conductive oxide (TCO) with a strong plasma dispersion effect. The device is co-fabricated by Intel's photonics fab and our in-house TCO patterning processes, which exhibits a high modulation efficiency of 117 pm/V and consequently can be driven by a very low Vpp of 0.8 V. At a 11 GHz modulation bandwidth where the modulator is limited by the RC bandwidth, we obtained 25 Gb/s clear eye diagrams with energy efficiency of 53 fJ/bit.

16.
Curr Diabetes Rev ; 20(1): e130423215752, 2024.
Article in English | MEDLINE | ID: mdl-37069712

ABSTRACT

Diabetes is a severe chronic disease that arises when insulin generation is insufficient, or the generated insulin cannot be used in the body, resulting a long-term metabolic disorder. Diabetes affects an estimated 537 million adults worldwide between the age of 20 to 79 (10.5% of all adults in this age range). By 2030, 643 million people will have diabetes globally, increasing to 783 million by 2045. According to the IDF 10th edition, the incidence of diabetes has been rising in South-East Asia (SEA) nations for at least 20 years, and current estimates have outperformed all previous forecasts. This review aims to provide updated estimates and future projections of diabetes prevalence at the national and global levels by using data from the 10th edition of the IDF Diabetes Atlas 2021. For this review, we studied more than 60 previously published related articles from various sources, such as PubMed and Google Scholar, and we extracted 35 studies out of 60. however, we used only 34 studies directly related to diabetes and its prevalence at the global, SEA, and Indian levels. This review article concludes that in 2021 more than 1 in 10 adults worldwide developed diabetes. The estimated prevalence of diabetes in adults (20 to 79 years) has more than tripled since the first edition in 2000, rising from an estimated 151 million (4.6% of the world's population at the time) to 537.5 million (10.5%) of the world's population today. The prevalence rate will be higher than 12.8% by 2045. In addition, this study indicates that the incidence of diabetes in the world, Southeast Asia, and India was 10.5%, 8.8%, and 9.6%, respectively, throughout 2021 and will rise to 12.5%, 11.5%, and 10.9%, respectively by 2045.


Subject(s)
Diabetes Mellitus , Insulins , Adult , Humans , Prevalence , Global Health , Diabetes Mellitus/epidemiology , India/epidemiology
17.
Curr Diabetes Rev ; 20(1): e200323214785, 2024.
Article in English | MEDLINE | ID: mdl-36959148

ABSTRACT

Insulin is an endocrine hormone produced by the beta cells of islets of Langerhans in the pancreas. It regulates blood sugar levels and various anabolic activities such as glycogenesis and lipid synthesis. Despite the fact that insulin therapy has been around for 100 years, insulin formulations are continually being improved to lower the risk of hypoglycaemia and other adverse effects, including weight gain. The development of insulin pens has significantly reduced the consequences of hypoglycaemia instead of vials and syringes. Both injectable devices were well-received by the patients. In the population under study, the efficacy and safety profiles of the pen appeared to be comparable to those of the vial/syringe. However, more patients reported that they would like to keep using pen devices. This article aimed to summarize the background of insulin, its mechanism, types, needle size, injection technique, adverse drug reactions and various studies related to insulin. It has been recommended intensive treatment of type-1 and type-2 diabetes patients to achieve good metabolic control and avoid chronic complications caused by poor glycaemic control. Healthcare professionals should address concerns about safe and effective implementation of inpatient hypoglycaemic control and insulin usage and they should empower patients to self-manage their diabetes, so they may improve their quality of life as well as avoid potential complications. Much more progress is expected in the future, at a faster pace, based on the implementation of well-organized recovery efforts, advancing technologies, and scientific collaboration.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemia , Humans , Insulin/adverse effects , Quality of Life , Hypoglycemic Agents/adverse effects , Hypoglycemia/chemically induced , Hypoglycemia/prevention & control , Syringes
18.
J. coloproctol. (Rio J., Impr.) ; 43(4): 267-270, Oct.-Dec. 2023. tab, graf
Article in English | LILACS | ID: biblio-1528935

ABSTRACT

Introduction: Cancer is a disease that emerges as a result of abnormal cell proliferation and their propensity to spread from one bodily region to another. There are over a hundred different types of cancer that impact individuals all over the world. It is difficult to identify in the early stages, but there are certain warning signals that the cells will turn malignant. Quality of life (QOL) is described by the World Health Organisation as "individuals' perception of life, values, objectives, standards, and interests within the cultural framework of the social environment in which they live and in relation to their goals, expectations, standards, and concerns." QOL assessment in health system is a multidimensional construct that can be measured by evaluating objective levels of health status filtered by the subjective perceptions and expectations of the individual. Aim and Objective: To assess socio-demographic factors and quality of life among cancer patients in tertiary care hospital. Materials and Methods: A hospital-based prospective observational study was conducted at Guru Gobind Singh Medical College and Hospital Faridkot district, Punjab (India). The study was conducted for a period of six months after getting approval from Institutional Ethical Committee (IEC). Generic instrument, SF-36 was used to assess the QOL. The study was analyzed on SPSS version 26.0 software. Descriptive and analytical analysis was used to describe the results. Results: Linear regression was conducted to see the relationship of physical functioning score with age and weight of the patients. The descriptive statistics shows the mean and standard deviation of the variable. The mean of physical functioning score was found to be (M = 27.82, SD = 15.635). The physical functioning score and age, weight of the patients in linear regression shows that the age and weight explain 17.5% Conclusion: Treatment revealed that severe and moderate activities restricted nearly half of the assessed patients, with body pain interfering with employment and routine activities. According to the findings of the current study, QOL deteriorates as the disease progresses. Cancer unquestionably has a detrimental influence on patients' quality of life, which is connected to the illness process itself, the therapy administered, and the length of the disease. (AU)


Subject(s)
Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Quality of Life , Surveys and Questionnaires , Health Profile , Neoplasms
19.
20.
Front Plant Sci ; 14: 1238507, 2023.
Article in English | MEDLINE | ID: mdl-37860245

ABSTRACT

Salinity or salt stress has deleterious effects on plant growth and development. It imposes osmotic, ionic, and secondary stresses, including oxidative stress on the plants and is responsible for the reduction of overall crop productivity and therefore challenges global food security. Plants respond to salinity, by triggering homoeostatic mechanisms that counter salt-triggered disturbances in the physiology and biochemistry of plants. This involves the activation of many signaling components such as SOS pathway, ABA pathway, and ROS and osmotic stress signaling. These biochemical responses are accompanied by transcriptional modulation of stress-responsive genes, which is mostly mediated by salt-induced transcription factor (TF) activity. Among the TFs, the multifaceted significance of WRKY proteins has been realized in many diverse avenues of plants' life including regulation of plant stress response. Therefore, in this review, we aimed to highlight the significance of salinity in a global perspective, the mechanism of salt sensing in plants, and the contribution of WRKYs in the modulation of plants' response to salinity stress. This review will be a substantial tool to investigate this problem in different perspectives, targeting WRKY and offering directions to better manage salinity stress in the field to ensure food security.

SELECTION OF CITATIONS
SEARCH DETAIL
...