Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 52(7): 4029-41, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26139869

ABSTRACT

Noodles are staple cereal food in many countries; however addition of encapsulated probiotics into noodle formulation, its effect on noodle quality and cell viability has not yet been reported. The aim of this study was to prepare microencapsulated Lactobacillus plantarum (MTCC 5422) by freeze drying with wall material combinations such as fructooligosaccharide (FOS), FOS + whey protein isolate (WPI), and FOS + denatured whey protein isolate (DWPI) to evaluate best wall system. Results showed that FOS + DWPI wall system provided better protection to cells after drying, during storage (60 days, 4 °C) and in simulated acidic and bile conditions. Further, FOS + DWPI encapsulates were incorporated into noodle formulation and evaluated the noodle quality and probiotic cell viability of cooked noodle obtained from two different production methods: (i) fresh and (ii) dried (room temperature dried - RTD, 28 °C and high temperature dried - HTD, 55 °C). The quality characteristics (cooking time, solid loss, texture, colour and sensory profiles) of FOS + DWPI encapsulates incorporated cooked noodles (both fresh and dried) were found to be acceptable. On evaluation of encapsulated probiotic bacteriaL. plantarum cell viability, 93.63 % and 62.42 % cell survival was obtained in fresh noodles before and after cooking respectively. However, 80.29 % (RTD) and 64.74 % (HTD) of encapsulated cells were viable in dried noodles, after cooking there was complete survival loss. This study suggested that fresh noodle was found to be a suitable carrier system to deliver viable cells. This is first report on influence of probiotic microcapsules in noodle processing.

2.
J Food Sci ; 75(1): S1-7, 2010.
Article in English | MEDLINE | ID: mdl-20492197

ABSTRACT

A highly acceptable dehydrated fruit punch was developed with selected fruits, namely lemon, orange, and mango, using a mixture design and optimization technique. The fruit juices were freeze dried, powdered, and used in the reconstitution studies. Fruit punches were prepared according to the experimental design combinations (total 10) based on a mixture design and then subjected to sensory evaluation for acceptability. Response surfaces of sensory attributes were also generated as a function of fruit juices. Analysis of data revealed that the fruit punch prepared using 66% of mango, 33% of orange, and 1% of lemon had highly desirable sensory scores for color (6.00), body (5.92), sweetness (5.68), and pleasantness (5.94). The aroma pattern of individual as well as combinations of fruit juices were also analyzed by electronic nose. The electronic nose could discriminate the aroma patterns of individual as well as fruit juice combinations by mixture design. The results provide information on the sensory quality of best fruit punch formulations liked by the consumer panel based on lemon, orange, and mango.


Subject(s)
Beverages , Food Handling/methods , Fruit , Citrus , Citrus sinensis , Color , Desiccation , Food Handling/standards , Humans , Mangifera , Smell , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...