Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neurooncol Adv ; 6(1): vdae035, 2024.
Article in English | MEDLINE | ID: mdl-38596718

ABSTRACT

Background: Outcomes for children with high-grade gliomas (HGG) remain poor. This multicenter phase II trial evaluated whether concurrent use of vorinostat or bevacizumab with focal radiotherapy (RT) improved 1-year event-free survival (EFS) compared to temozolomide in children with newly diagnosed HGG who received maintenance temozolomide and bevacizumab. Methods: Patients ≥ 3 and < 22 years with localized, non-brainstem HGG were randomized to receive RT (dose 54-59.4Gy) with vorinostat, temozolomide, or bevacizumab followed by 12 cycles of bevacizumab and temozolomide maintenance therapy. Results: Among 90 patients randomized, the 1-year EFS for concurrent bevacizumab, vorinostat, or temozolomide with RT was 43.8% (±8.8%), 41.4% (±9.2%), and 59.3% (±9.5%), respectively, with no significant difference among treatment arms. Three- and five-year EFS for the entire cohort was 14.8% and 13.4%, respectively, with no significant EFS difference among the chemoradiotherapy arms. IDH mutations were associated with more favorable EFS (P = .03), whereas H3.3 K27M mutations (P = .0045) and alterations in PIK3CA or PTEN (P = .025) were associated with worse outcomes. Patients with telomerase- and alternative lengthening of telomeres (ALT)-negative tumors (n = 4) had an EFS of 100%, significantly greater than those with ALT or telomerase, or both (P = .002). While there was no difference in outcomes based on TERT expression, high TERC expression was associated with inferior survival independent of the telomere maintenance mechanism (P = .0012). Conclusions: Chemoradiotherapy with vorinostat or bevacizumab is not superior to temozolomide in children with newly diagnosed HGG. Patients with telomerase- and ALT-negative tumors had higher EFS suggesting that, if reproduced, mechanism of telomere maintenance should be considered in molecular-risk stratification in future studies.

2.
Neuro Oncol ; 23(7): 1183-1196, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33539525

ABSTRACT

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is a pediatric lethal high-grade brainstem glioma with no effective therapies. OLIG2 (oligodendrocyte transcription factor 2) was reported to be critical for the growth of a DIPG cell line CCHMC-DIPG-1. Surprisingly, we found that the CCHMC-DIPG-1 cells express little OLIG2 and exhibit a mesenchymal phenotype, which raised a question regarding the role of OLIG2 in the growth of DIPG cells. METHODS: We evaluated the function of OLIG2 in different DIPG cell lines through molecular and genetic approaches and performed transcriptomic and genomic landscape profiling including whole-genome bisulfite sequencing, RNA-seq, ATAC-seq, and ChIP-seq. shRNA-mediated knockdown and CRISPR-Cas9-mediated knockout approaches were utilized to assess OLIG2 functions in DIPG cell growth. RESULTS: We found that DIPG cells are phenotypically heterogeneous and exhibit the characteristics of distinct malignant gliomas including proneural, classical, and mesenchymal subtypes. OLIG2 knockdown did not impact the growth of CCHMC-DIPG-1 cells, wherein OLIG2 is epigenetically silenced. Moreover, OLIG2 deletion did not substantially impair OLIG2-expressing proneural-like DIPG growth but led to an upregulation of HIPPO-YAP1 and epidermal growth factor receptor (EGFR) signaling and a tumor phenotype shift. Targeting HIPPO-YAP1 and EGFR signaling in OLIG2-deficient DIPG cells inhibited tumor cell growth. CONCLUSIONS: Our data indicate that OLIG2 is dispensable for DIPG growth but regulates the phenotypic switch of DIPG tumor cells. OLIG2 downregulation leads to deregulation of adaptive YAP1 and EGFR signaling. Targeting YAP1 and EGFR pathways inhibits the growth of OLIG2-deficient DIPG cells, pointing to a therapeutic potential by targeting adaptive signaling to treat DIPG tumors with nominal OLIG2 expression.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Brain Stem Neoplasms/genetics , Cell Line , Cell Line, Tumor , Child , Humans , Oligodendrocyte Transcription Factor 2 , Phenotype
3.
J Neurooncol ; 152(1): 107-114, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33502679

ABSTRACT

BACKGROUND: While autopsy-repository programs with a variety of pediatric central nervous system (CNS) tumor types are a critical resource for preclinical neuro-oncology research, few exist and there is no published guidance on how to develop one. The goal of this prospective Pediatric Brain Tumor Repository (PBTR) study was to develop such a program at Cincinnati Children's Hospital Medical Center (CCHMC) and then publish the quantitative and experiential data as a guide to support the development of similar programs. METHODS: Protocols and infrastructure were established-to educate oncologists and families, establish eligibility, obtain consent, address pre- and post-autopsy logistics (e.g., patient and tissue transportation), process and authenticate tissue samples, and collect and analyze data. RESULTS: Of the 129 pediatric CNS tumor patients at CCHMC who died between 2013 and 2018, 109 were eligible for our study. Of these, 74% (81 of 109) were approached for PBTR donation, and 68% (55 of 81) consented. In the final year of the study, approach and consent rates were 93% and 85%, respectively. Median time from death to autopsy (postmortem interval, PMI) was 10 h (range, 1.5-30). In the outpatient setting, PMI increased with distance (from the hospice/home where the patient died to CCHMC). In all patients, PMI appeared to be lower, when consent was obtained more than 24 h before death. CONCLUSIONS: Procurement of autopsy specimens need not be a barrier in neuro-oncology research. Regional centers, strict timing-of-consent, patient education, and dedicated staff are all needed to minimize PMI and, thereby, increase the value of the procured tissue for an array of basic and translational research applications.


Subject(s)
Autopsy , Central Nervous System Neoplasms , Tissue and Organ Procurement/organization & administration , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult
4.
J Neurooncol ; 149(3): 511-522, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33034839

ABSTRACT

PURPOSE: Cyclin-dependent kinase-retinoblastoma (CDK-RB) pathway is dysregulated in some diffuse intrinsic pontine gliomas (DIPG). We evaluated safety, feasibility, and early efficacy of the CDK4/6-inhibitor ribociclib, administered following radiotherapy in newly-diagnosed DIPG patients. METHODS: Following radiotherapy, eligible patients received ribociclib in 28-day cycles (350 mg/m2; 21 days on/7 days off). Feasibility endpoints included tolerability for at least 6 courses, and a less than 2-week delay in restarting therapy after 1 dose reduction. Early efficacy was measured by 1-year and median overall survival (OS). Patient/parent-by-proxy reported outcomes measurement information system (PROMIS) assessments were completed prospectively. RESULTS: The study included 10 evaluable patients, 9 DIPG and 1 diffuse midline glioma (DMG)-all 3.7 to 19.8 years of age. The median number of courses was 8 (range 3-14). Three patients required dose reduction for grade-4 neutropenia, and 1 discontinued therapy for hematological toxicity following course 4. The most common grade-3/4 toxicity was myelosuppression. After 2 courses, MRI evaluations in 4 patients revealed increased necrotic volume, associated with new neurological symptoms in 3 patients. The 1-year and median OS for DIPG was 89% and 16.1 months (range 10-30), respectively; the DMG patient died at 6 months post-diagnosis. Five patients donated brain tissue and tumor; 3 were RB+ . CONCLUSIONS: Ribociclib administered following radiotherapy is feasible in DIPG and DMG. Increased tumor necrosis may represent a treatment effect. These data warrant further prospective volumetric analyses of tumors with necrosis. Feasibility and stabilization findings support further investigation of ribociclib in combination therapies. TRIAL REGISTRATION: NCT02607124.


Subject(s)
Aminopyridines/therapeutic use , Brain Stem Neoplasms/therapy , Chemoradiotherapy/methods , Diffuse Intrinsic Pontine Glioma/therapy , Purines/therapeutic use , Adolescent , Adult , Aminopyridines/pharmacokinetics , Brain Stem Neoplasms/pathology , Child , Child, Preschool , Diffuse Intrinsic Pontine Glioma/pathology , Female , Follow-Up Studies , Humans , Male , Maximum Tolerated Dose , Prognosis , Purines/pharmacokinetics , Tissue Distribution , Young Adult
5.
Oncotarget ; 8(38): 62962-62975, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28968963

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) is a poor-prognosis pediatric brain tumor. No effective curative therapy is currently available and no therapeutic advances have been made in several decades. BMI-1 is a member of the multimeric protein complex Polycomb repressor complex 1. It is highly expressed in a number of diseases and malignancies and has been implicated in self-renewal of normal and cancer cells, and in DNA damage signaling. The role of BMI-1 in DIPG is largely unknown. Here, we show that BMI-1 is highly expressed in tumor tissue samples of DIPG patients and in patient-derived cancer stem-like cells. BMI-1 downregulation leads to the inhibition of DIPG patient-derived neurosphere cell proliferation, cell cycle signaling, self-renewal, telomerase expression and activity, and suppresses DIPG cell migration. Moreover, targeted inhibition of BMI-1 sensitizes DIPG cells to radiomimetic drug-induced DNA damage. Together, our data validate BMI-1 as a potential therapeutic target to treat children with DIPG.

6.
J Neurooncol ; 129(3): 443-451, 2016 09.
Article in English | MEDLINE | ID: mdl-27350411

ABSTRACT

Telomerase activation is critical in many cancers including central nervous system (CNS) tumors. Imetelstat is an oligonucleotide that binds to the template region of the RNA component of telomerase, inhibiting its enzymatic activity. We conducted an investigator-sponsored molecular biology (MB) and phase II study to estimate inhibition of tumor telomerase activity and sustained responses by imetelstat in children with recurrent CNS malignancies. In the MB study, patients with recurrent medulloblastoma, high-grade glioma (HGG) or ependymoma undergoing resection received one dose of imetelstat as a 2-h intravenous infusion at 285 mg/m(2), 12-24 h before surgery. Telomerase activity was evaluated in fresh tumor from surgery. Post-surgery and in the phase II study, patients received imetelstat IV (days 1 and 8 q21-days) at 285 mg/m(2). Imetelstat pharmacokinetic and pharmacodynamic studies were performed. Of two evaluable patients on the MB trial, intratumoral telomerase activity was inhibited by 95 % compared to baseline archival tissue in one patient and was inevaluable in one patient. Forty-two patients (40 evaluable for toxicity) were enrolled: 9 medulloblastomas, 18 HGG, 4 ependymomas, 9 diffuse intrinsic pontine gliomas. Most common grade 3/4 toxicities included thrombocytopenia (32.5 %), lymphopenia (17.5 %), neutropenia (12.5 %), ALT (7.5 %) and AST (5 %) elevation. Two patients died of intratumoral hemorrhage secondary to thrombocytopenia leading to premature study closure. No objective responses were observed. Telomerase inhibition was observed in peripheral blood mononuclear cells (PBMCs) for at least 8 days. Imetelstat demonstrated intratumoral and PBMC target inhibition; the regimen proved too toxic in children with recurrent CNS tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Central Nervous System Neoplasms/drug therapy , Glioma/drug therapy , Indoles/therapeutic use , Niacinamide/analogs & derivatives , Telomerase/metabolism , Adolescent , Alanine Transaminase/metabolism , Blood Cell Count , Central Nervous System Neoplasms/surgery , Child , Child, Preschool , Female , Glioma/surgery , Humans , Lymphocytes/drug effects , Lymphocytes/pathology , Male , Neoplasm Recurrence, Local/drug therapy , Neutrophils/drug effects , Neutrophils/pathology , Niacinamide/therapeutic use , Oligonucleotides , Telomerase/genetics , Time Factors , Treatment Outcome , Young Adult
7.
Acta Neuropathol Commun ; 4: 13, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26860432

ABSTRACT

Through inadvertent oversight of the authors, the paper failed to acknowledge funding support from Genome Canada. The Acknowledgement section should include the text: "This work was supported by the Canadian Centre for Computational Genomics (C3G), part of the Genome Innovation Network (GIN), funded by Genome Canada through Genome Quebec and Ontario Genomics".

8.
Acta Neuropathol Commun ; 4: 1, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26727948

ABSTRACT

INTRODUCTION: Diffuse intrinsic pontine glioma (DIPG) and midline high-grade glioma (mHGG) are lethal childhood brain tumors. Spatial genomic heterogeneity has been well-described in adult HGG but has not been comprehensively characterized in pediatric HGG. We performed whole exome sequencing on 38-matched primary, contiguous, and metastatic tumor sites from eight children with DIPG (n = 7) or mHGG (n = 1) collected using a unique MRI-guided autopsy protocol. Validation was performed using Sanger sequencing, Droplet Digital polymerase-chain reaction, immunohistochemistry, and fluorescent in-situ hybridization. RESULTS: Median age at diagnosis was 6.1 years (range: 2.9-23.3 years). Median overall survival was 13.2 months (range: 11.2-32.2 months). Contiguous tumor infiltration and distant metastases were observed in seven and six patients, respectively, including leptomeningeal dissemination in three DIPGs. Histopathological heterogeneity was evident in seven patients, including intra-pontine heterogeneity in two DIPGs, ranging from World Health Organization grade II to IV astrocytoma. We found conservation of heterozygous K27M mutations in H3F3A (n = 4) or HIST1H3B (n = 3) across all primary, contiguous, and metastatic tumor sites in all DIPGs. ACVR1 (n = 2), PIK3CA (n = 2), FGFR1 (n = 2), and MET (n = 1) were also intra-tumorally conserved. ACVR1 was co-mutated with HIST1H3B (n = 2). In contrast, PDGFRA amplification and mutation were spatially heterogeneous, as were mutations in BCOR (n = 1), ATRX (n = 2), and MYC (n = 1). TP53 aberrations (n = 3 patients) varied by type and location between primary and metastatic tumors sites but were intra-tumorally conserved. CONCLUSION: Spatial conservation of prognostically-relevant and therapeutically-targetable somatic mutations in DIPG and mHGG contrasts the significant heterogeneity of driver mutations seen in adult HGG and supports uniform implementation of diagnostic biopsy in DIPG and mHGG to classify molecular risk groups and guide therapeutic strategy.


Subject(s)
Brain Stem Neoplasms/diagnosis , Glioma/diagnosis , Mutation/genetics , Adolescent , Biopsy , Brain Stem Neoplasms/genetics , Child , Child, Preschool , Female , Gene Expression Profiling , Glioma/genetics , Humans , Magnetic Resonance Imaging , Male , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...