Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1320638, 2023.
Article in English | MEDLINE | ID: mdl-38356867

ABSTRACT

Introduction: Plants can adapt their growth to optimize light capture in competitive environments, with branch angle being a crucial factor influencing plant phenotype and physiology. Decreased branch angles in cereal crops have been shown to enhance productivity in high-density plantings. The Tiller Angle Control (TAC1) gene, known for regulating tiller inclination in rice and corn, has been found to control branch angle in eudicots. Manipulating TAC1 in field crops like cotton offers the potential for improving crop productivity. Methods: Using a homolog-based methodology, we examined the distribution of TAC1-related genes in cotton compared to other angiosperms. Furthermore, tissue-specific qPCR analysis unveiled distinct expression patterns of TAC1 genes in various cotton tissues. To silence highly expressed specific TAC1 homeologs in the stem, we applied CRISPR-Cas9 gene editing and Agrobacterium-mediated transformation, followed by genotyping and subsequent phenotypic validation of the mutants. Results: Gene duplication events of TAC1 specific to the Gossypium lineage were identified, with 3 copies in diploid progenitors and 6 copies in allotetraploid cottons. Sequence analysis of the TAC1 homeologs in Gossypium hirsutum revealed divergence from other angiosperms with 1-2 copies, suggesting possible neo- or sub-functionalization for the duplicated copies. These TAC1 homeologs exhibited distinct gene expression patterns in various tissues over developmental time, with elevated expression of A11G109300 and D11G112200, specifically in flowers and stems, respectively. CRISPR-mediated loss of these TAC1 homeologous genes resulted in a reduction in branch angle and altered petiole angles, and a 5 to 10-fold reduction in TAC1 expression in the mutants, confirming their role in controlling branch and petiole angles. This research provides a promising strategy for genetically engineering branch and petiole angles in commercial cotton varieties, potentially leading to increased productivity.

2.
Phytopathology ; 112(5): 1134-1140, 2022 May.
Article in English | MEDLINE | ID: mdl-35378055

ABSTRACT

Resistance to the soilborne fungal pathogen Rhizoctonia solani AG-8 is desirable in adapted wheat and barley but remains an elusive trait for prebreeders and breeders. In a previous study, we observed that emergence and root growth was faster in the Rhizoctonia-susceptible 'Scarlet' than in its resistant counterpart, 'Scarlet-Rz1'. The objective of the current study was to quantify early root growth rate and total root length in resistant and susceptible synthetic hexaploid wheat lines, including parental lines and 22 recombinant inbred lines derived crosses between parental lines. In Petri dish assays, the susceptible lines displayed a faster rate of root growth during the first 40 h of root emergence compared with resistant lines. This growth differential was observed in 14-day and 48-h greenhouse assays, in which the total root length of susceptible parental lines was significantly (P < 0.05) greater than that of resistant parental lines. However, the resistant lines sustained less root loss compared with susceptible lines when R. solani AG-8 was present in the soil. Early root growth rate and total root length were not correlated to freezing tolerance in a set of wheat cultivars selected for cold tolerance. The findings indicated that early root growth was negatively correlated to R. solani AG-8 damage in resistant synthetic wheat lines developed for the Pacific Northwest, United States, and suggested that the dynamics of root emergence affect resistance to this soilborne pathogen.


Subject(s)
Hordeum , Rhizoctonia , Plant Diseases/microbiology , Soil Microbiology , Triticum/genetics , Triticum/microbiology
3.
Plants (Basel) ; 10(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34579308

ABSTRACT

Somatic embryogenesis-mediated plant regeneration is essential for the genetic manipulation of agronomically important traits in upland cotton. Genotype specific recalcitrance to regeneration is a primary challenge in deploying genome editing and incorporating useful transgenes into elite cotton germplasm. In this study, transcriptomes of a semi-recalcitrant cotton (Gossypium hirsutum L.) genotype 'Coker312' were analyzed at two critical stages of somatic embryogenesis that include non-embryogenic callus (NEC) and embryogenic callus (EC) cells, and the results were compared to a non-recalcitrant genotype 'Jin668'. We discovered 305 differentially expressed genes in Coker312, whereas, in Jin668, about 6-fold more genes (2155) were differentially expressed. A total of 154 differentially expressed genes were common between the two genotypes. Gene enrichment analysis of the upregulated genes identified functional categories, such as lipid transport, embryo development, regulation of transcription, sugar transport, and vitamin biosynthesis, among others. In Coker312 EC cells, five major transcription factors were highly upregulated: LEAFY COTYLEDON 1 (LEC1), WUS-related homeobox 5 (WOX5), ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and WRKY2. In Jin668, LEC1, BABY BOOM (BBM), FUS3, and AGAMOUS-LIKE15 (AGL15) were highly expressed in EC cells. We also found that gene expression of these embryogenesis genes was typically higher in Jin668 when compared to Coker312. We conclude that significant differences in the expression of the above genes between Coker312 and Jin668 may be a critical factor affecting the regenerative ability of these genotypes.

4.
Front Plant Sci ; 11: 572920, 2020.
Article in English | MEDLINE | ID: mdl-33101341

ABSTRACT

The purinoceptor P2K1/DORN1 recognizes extracellular ATP, a damage-associated molecular pattern (DAMP) released upon cellular disruption by wounding and necrosis, which in turn, boost plant innate immunity. P2K1 is known to confer plant resistance to foliar biotrophic, hemi-biotrophic, and necrotrophic pathogens. However, until now, no information was available on its function in defense against root pathogens. In this report, we describe the contribution of P2K1 to resistance in Arabidopsis against Rhizoctonia solani, a broad host range, necrotrophic soilborne fungal pathogen. In pot assays, the Arabidopsis P2K1 overexpression line OxP2K1 showed longer root length and a greater rosette surface area than wild type in the presence of the pathogen. In contrast, the knockout mutant dorn1-3 and the double mutant rbohd/f, defective in two subunits of the respiratory burst complex NADPH oxidase, exhibited significant reductions in shoot and root lengths and rosette surface area compared to wild type when the pathogen was present. Expression of PR1, PDF1.2, and JAZ5 in the roots was reduced in dorn1-3 and rbohd/f and elevated in OxP2K1 relative to wild type, indicating that the salicylate and jasmonate defense signaling pathways functioned in resistance. These results indicated that a DAMP-mediated defense system confers basal resistance against an important root necrotrophic fungal pathogen.

5.
Methods Mol Biol ; 1991: 43-54, 2019.
Article in English | MEDLINE | ID: mdl-31041761

ABSTRACT

Extracellular ATP functions as an important signaling molecule in both plants and animals. In plants, ATP is released in the extracellular region of cells in response to environmental perturbations, such as herbivory, cellular damage, or other abiotic and biotic stimuli, which is then perceived by the purinoceptor P2K1 as a damaged-self signal for activation of defense responses. Given its involvement in various physiological processes, quantification of extracellular ATP is important for further understanding of its molecular function. In this chapter, we describe a method for the accurate and reliable determination of extracellular ATP concentrations in plant cell culture media based on the luciferase-luciferin reaction, using either end-point or real-time detection assays. The protocol can be easily performed with any luminometer within 1 h after sample collection. Although we use Arabidopsis suspension cells, the protocol described can be optimized for any cell type.


Subject(s)
Adenosine Triphosphate/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Culture Media/metabolism , Luciferases/metabolism , Quinolines/metabolism , Thiazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...