Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 18(4)2021 07 15.
Article in English | MEDLINE | ID: mdl-34111852

ABSTRACT

Objective. Respiration and vascular pulsation cause relative micromotion of brain tissue against stationary implants resulting in repetitive displacements of 2-4µm (due to vascular pulsation) and 10-30µm (due to breathing) in rats. However, the direct functional impact of such tissue micromotion on the cells at the neural interface remains unknown. This study aims to test the hypothesis that micromotion in brain tissue causes changes in membrane potentials (MPs) through the activation of mechanosensitive ion channels.Approach. Intracellular MPs were recorded from Aplysia ganglion cells (n= 8) and cortical cells (n= 15)in vivoinn= 7 adult rats. Cyclic stresses between 0.2 and 4 kPa repeated at 1 Hz were tested in Aplysia ganglion cells. For thein vivoexperiments, 30µM of gadolinium chloride (Gd3+), a non-selective blocker of mechanosensitive ion channels, was used to assess the role of such ion channels.Main results. In Aplysia ganglion cells, there were no MP changes for <1.5 kPa, and action potentials were observed at >3.1 kPa. Drug studies utilizing 5-HT showed an 80% reduction in firing frequency from controls. Inin vivoexperiments, periodic pulsations (1-10 mV) were observed in the MPs of cells that corresponded to breathing and heart-rate. In response to the addition of 30µM Gd3+, we observed a significant reduction (0.5-3 mV) in the periodic pulsations in MP in all cortical cells across four different rats, suggesting the role of mechanosensitive ion channels in mediating MP fluctuations due to tissue micromotion at the neural interface.Significance.Under chronic conditions, the tissue at the interface stiffens due to scar tissue formation, which is expected to increase the likelihood of recruiting stretch-receptors due to tissue micromotion. It is speculated that such chronic sub-threshold pulsations in MPs might trigger the immune response at the neural interface.


Subject(s)
Intracellular Membranes , Prostheses and Implants , Animals , Rats
2.
Microsyst Nanoeng ; 6: 1, 2020.
Article in English | MEDLINE | ID: mdl-34567616

ABSTRACT

Conventional electrodes and associated positioning systems for intracellular recording from single neurons in vitro and in vivo are large and bulky, which has largely limited their scalability. Further, acquiring successful intracellular recordings is very tedious, requiring a high degree of skill not readily achieved in a typical laboratory. We report here a robotic, MEMS-based intracellular recording system to overcome the above limitations associated with form factor, scalability, and highly skilled and tedious manual operations required for intracellular recordings. This system combines three distinct technologies: (1) novel microscale, glass-polysilicon penetrating electrode for intracellular recording; (2) electrothermal microactuators for precise microscale movement of each electrode; and (3) closed-loop control algorithm for autonomous positioning of electrode inside single neurons. Here we demonstrate the novel, fully integrated system of glass-polysilicon microelectrode, microscale actuators, and controller for autonomous intracellular recordings from single neurons in the abdominal ganglion of Aplysia californica (n = 5 cells). Consistent resting potentials (<-35 mV) and action potentials (>60 mV) were recorded after each successful penetration attempt with the controller and microactuated glass-polysilicon microelectrodes. The success rate of penetration and quality of intracellular recordings achieved using electrothermal microactuators were comparable to that of conventional positioning systems. Preliminary data from in vivo experiments in anesthetized rats show successful intracellular recordings. The MEMS-based system offers significant advantages: (1) reduction in overall size for potential use in behaving animals, (2) scalable approach to potentially realize multi-channel recordings, and (3) a viable method to fully automate measurement of intracellular recordings. This system will be evaluated in vivo in future rodent studies.

3.
Biomed Phys Eng Express ; 6(2): 025003, 2020 02 17.
Article in English | MEDLINE | ID: mdl-33438629

ABSTRACT

OBJECTIVE: There is a need for low power, scalable photoelectronic devices and systems for emerging optogenetic needs in neuromodulation. Conventional light emitting diodes (LEDs) are constrained by power and lead-counts necessary for scalability. Organic LEDs (OLEDs) offer an exciting approach to decrease power and lead-counts while achieving high channel counts on thin, flexible substrates that conform to brain surfaces or peripheral neuronal fibers. In this study, we investigate the potential for using OLEDs to modulate neuronal networks cultured in vitro on a transparent microelectrode array (MEA) and subsequently validate neurostimulation in vivo in a transgenic mouse model. APPROACH: Cultured mouse cortical neurons were transfected with light-sensitive opsins such as blue-light sensitive channel-rhodopsin (ChR2) and green-light sensitive chimeric channel-rhodopsin (C1V1tt) and stimulated using blue and green OLEDs (with 455 and 520 nm peak emission spectra respectively) at a power of ~1 mW mm-2 under pulsed conditions. MAIN RESULTS: We demonstrate neuromodulation and optostimulus-locked, single unit-neuronal activity in neurons expressing stimulating opsins (34 units on n = 4 MEAs, each with 16 recordable channels). We also validated the optostimulus-locked response in preliminary experiments in a channel-rhodopsin expressing transgenic mouse model, where at least three isolatable single neuronal cortical units respond to OLED stimulation. SIGNIFICANCE: The above results indicate the feasibility of generating sufficient luminance from OLEDs to perform neuromodulation both in vitro and in vivo. This opens up the possibility of developing thin, flexible OLED films with multiple stimulation sites that can conform to the shape of the neuronal targets in the brain or the peripheral nervous system. However, stability of these OLEDs under chronic conditions still needs to be carefully assessed with appropriate packaging approaches.


Subject(s)
Channelrhodopsins/physiology , Electrodes , Light , Neurons/physiology , Optogenetics , Photic Stimulation/methods , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Transgenic , Neurons/radiation effects
4.
Biomed Microdevices ; 18(4): 72, 2016 08.
Article in English | MEDLINE | ID: mdl-27457752

ABSTRACT

Emerging neural prosthetics require precise positional tuning and stable interfaces with single neurons for optimal function over a lifetime. In this study, we report an autonomous control to precisely navigate microscale electrodes in soft, viscoelastic brain tissue without visual feedback. The autonomous control optimizes signal-to-noise ratio (SNR) of single neuronal recordings in viscoelastic brain tissue while maintaining quasi-static mechanical stress conditions to improve stability of the implant-tissue interface. Force-displacement curves from microelectrodes in in vivo rodent experiments are used to estimate viscoelastic parameters of the brain. Using a combination of computational models and experiments, we determined an optimal movement for the microelectrodes with bidirectional displacements of 3:2 ratio between forward and backward displacements and a inter-movement interval of 40 s for minimizing mechanical stress in the surrounding brain tissue. A regulator with the above optimal bidirectional motion for the microelectrodes in in vivo experiments resulted in significant reduction in the number of microelectrode movements (0.23 movements/min) and longer periods of stable SNR (53 % of the time) compared to a regulator using a conventional linear, unidirectional microelectrode movement (with 1.48 movements/min and stable SNR 23 % of the time).


Subject(s)
Brain/physiology , Electrodes, Implanted , Mechanical Phenomena , Neurons/physiology , Animals , Equipment Design , Male , Microelectrodes , Motion , Rats , Rats, Sprague-Dawley , Signal-To-Noise Ratio , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...