Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(7)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37507952

ABSTRACT

Quinoa (Chenopodium quinoa Willd) and chia (Salvia hispanica) are essential traditional crops with excellent nutritional properties. Quinoa is known for its high and good quality protein content and nine essential amino acids vital for an individual's development and growth, whereas chia seeds contain high dietary fiber content, calories, lipids, minerals (calcium, magnesium, iron, phosphorus, and zinc), and vitamins (A and B complex). Chia seeds are also known for their presence of a high amount of omega-3 fatty acids. Both quinoa and chia seeds are gluten-free and provide medicinal properties due to bioactive compounds, which help combat various chronic diseases such as diabetes, obesity, cardiovascular diseases, and metabolic diseases such as cancer. Quinoa seeds possess phenolic compounds, particularly kaempferol, which can help prevent cancer. Many food products can be developed by fortifying quinoa and chia seeds in different concentrations to enhance their nutritional profile, such as extruded snacks, meat products, etc. Furthermore, it highlights the value-added products that can be developed by including quinoa and chia seeds, alone and in combination. This review focused on the recent development in quinoa and chia seeds nutritional, bioactive properties, and processing for potential human health and therapeutic applications.

2.
Arch Microbiol ; 202(10): 2799-2808, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32747997

ABSTRACT

Many bacteria produce polyhydroxyalkanoates (PHAs) when exposed to stressful conditions. It is a known fact that PHAs have the potential to replace petrochemical-based plastics as they are biodegradable, biocompatible, and thermoprocessible materials. The study focusses on producing PHA from microbes isolated from polluted environments and pomegranate peels were utilized as a unique carbon source. This was done to ensure reduction in the cost of the substrate that has not yet been reported as a substrate for PHA production. A comparative study was also done with Cupriavidus necator, the reference strain. Out of many bacterial strains, isolated, eight of these were found to have ability to produce PHA. Pomegranate peel was substituted as carbon source in the medium and all bacterial isolates along with reference strain were used to test their ability to produce PHA from waste. Cupriavidus necator, the reference strain, yielded 71% PHA. Bacillus halotolerans DSM8802 yielded 83% at 1:1:: C:N ratio at 72 h.


Subject(s)
Bacillus/metabolism , Cupriavidus necator/metabolism , Polyhydroxyalkanoates/biosynthesis , Pomegranate/microbiology , Waste Disposal Facilities , Bacillus/isolation & purification , Carbon
3.
Bioresour Technol ; 99(13): 5444-51, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18083024

ABSTRACT

Thirty five bacterial isolates from diverse environmental sources such as contaminated food, nitrogen rich soil, activated sludges from pesticide and oil refineries effluent treatment plants were found to belong to Bacillus, Bordetella, Enterobacter, Proteus, and Pseudomonas sp. on the basis of 16S rRNA gene sequence analysis. Under dark fermentative conditions, maximum hydrogen (H(2)) yields (mol/mol of glucose added) were recorded to be 0.68 with Enterobacter aerogenes EGU16 followed by 0.63 with Bacillus cereus EGU43 and Bacillus thuringiensis EGU45. H(2) constituted 63-69% of the total biogas evolved. Out of these 35 microbes, 18 isolates had the ability to produce polyhydroxybutyrate (PHB), which varied up to 500 mg/l of medium, equivalent to a yield of 66.6%. The highest PHB yield was recorded with B. cereus strain EGU3. Nine strains had high hydrolytic activities (zone of hydrolysis): lipase (34-38 mm) -Bacillus sphaericus strains EGU385, EGU399 and EGU542; protease (56-62 mm) -Bacillus sp. strains EGU444, EGU447 and EGU445; amylase (23 mm) -B. thuringiensis EGU378, marine bacterium strain EGU409 and Pseudomonas sp. strain EGU448. These strains with high hydrolytic activities had relatively low H(2) producing abilities in the range of 0.26-0.42 mol/mol of glucose added and only B. thuringiensis strain EGU378 had the ability to produce PHB. This is the first report among the non-photosynthetic microbes, where the same organism(s) -B. cereus strain EGU43 and B. thuringiensis strain EGU45, have been shown to produce H(2) - 0.63 mol/mol of glucose added and PHB - 420-435 mg/l medium.


Subject(s)
Bacillus thuringiensis/metabolism , Enterobacter aerogenes/metabolism , Hydrogen/metabolism , Hydroxybutyrates/metabolism , Bacillus thuringiensis/genetics , Darkness , Ecosystem , Enterobacter aerogenes/genetics , Fermentation , Kinetics , Polymerase Chain Reaction , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/metabolism , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...