Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 100: 106617, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769588

ABSTRACT

The rapid spread and uncontrollable evolution of antibiotic-resistant bacteria have already become urgent global to treat bacterial infections. Sonodynamic therapy (SDT), a noninvasive and effective therapeutic strategy, has broadened the way toward dealing with antibiotic-resistant bacteria and biofilms, which base on ultrasound (US) with sonosensitizer. Sonosensitizer, based on small organic molecules or inorganic nanoparticles, is essential to the SDT process. Thus, it is meaningful to design a sonosensitizer-loaded nanoplatform and synthesize the nanoplatform with an efficient SDT effect. In this review, we initially summarize the probable SDT-based antibacterial mechanisms and systematically discuss the current advancement in different SDT-based nanoplatform (including nanoplatform for organic small-molecule sonosensitizer delivery and nanoplatform as sonosensitizer) for bacterial infection therapy. In addition, the biomedical applications of SDT-involved multifunctional nanoplatforms are also discussed. We believe the innovative SDT-based nanoplatforms would become a highly efficient next-generation noninvasive therapeutic tool for combating bacterial infection.


Subject(s)
Bacterial Infections , Nanoparticles , Ultrasonic Therapy , Humans , Cell Line, Tumor , Bacterial Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Reactive Oxygen Species
2.
J Biomater Sci Polym Ed ; 34(12): 1683-1701, 2023 08.
Article in English | MEDLINE | ID: mdl-37058125

ABSTRACT

Sodium alginate is a polyanionic natural polysaccharide polymer widely used in tissue engineering. However, the lack of binding domains for interaction with cells limits its application in regenerative medicine. This study designed a kind of galactosylated sodium alginate (G-SA) material with improved galactose grafting rate by EDC/NHS activation of carboxyl groups in MES buffer and subsequently cross-linking by Ca2+ aims to enhance the adherence behavior of HepG2 cells on alginate substrate. The synthesized G-SA was characterized by Fourier transform infrared spectra and nuclear magnetic resonance spectroscopy. G-SA exhibited good biocompatibility and significantly enhanced the adhesion behavior of HepG2 cells on its surface. Furthermore, we demonstrated that the effect of G-SA concentration in enhancing cell adhesion was diminished at higher than 2% w/v. Finally, the suitability of G-SA material is investigated for 3D printing, demonstrating that HepG2 cells could maintain high viability and excellent printability in the interior of the gel. In addition, cells could multiply and grow into cell spheroids with an average size of 200 µm in G-SA scaffolds. These results indicated that galactosylated sodium alginate material could be used as a 3D culture system that could be effective for engineering liver cancer models.


Subject(s)
Alginates , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Alginates/chemistry , Hep G2 Cells , Tissue Engineering/methods , Polymers , Printing, Three-Dimensional
3.
Micromachines (Basel) ; 11(4)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326021

ABSTRACT

In this study, a convenient assay method has been developed based on labeled functional nucleic acids (H-DNA) and a competitive fluorescent lateral flow immunoassay (CF-LFI) for ampicillin (AMP) detection. Herein, we designed the tunable AMP probes for AMP detection based on the AMP aptamer, and the secondary DNA fragment. The probes can generate tunable signals on the test line (T line) and control line (C line) according to the concentration of AMP. The accuracy of detection was improved by optimizing the tunable AMP probes. Under the optimal conditions, the linear concentration of AMP detection is ranged from 10 to 200 ng/L with a limit of quantitation (LOQ) value of 2.71 ng/L, and the recovery is higher than 80.5 %. Moreover, the developed method shows the potential application for AMP detection in the hospital wastewater.

4.
Int J Mol Sci ; 21(7)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276405

ABSTRACT

Since their invention, periodic mesoporous organosilicas (PMOs), an innovative class of materials based on organic as well as inorganic hybrid nanocomposites, have gathered enormous interest owing to their advantageous physicochemical attributes over the pristine mesoporous silica nanoparticles (MSNs). To further increase the interactions with the therapeutic guest species and subsequent compatibility as well as the physicochemical properties of PMOs, we demonstrate the post-hydroxylation of benzene-bridged PMO-based nanoparticles for photodynamic therapy (PDT). Initially, the hydrophobic benzene group in the PMO framework is modified through electrophilic substitution-assisted hydroxylation mediated by Fenton as well as Fenton-like reactions utilizing divalent and trivalent metal salts, respectively. These post-grafted PMOs with tuned hydrophobicity resulted in improved biocompatibility as well as drug loading efficiency through governing the interactions in host-guest chemistry by changing the physicochemical properties of the PMO frameworks. Furthermore, the photosensitizer, protoporphyrin IX (PpIX) molecules, encapsulated in the PMO frameworks showed a significant PDT effect in colon carcinoma (HT-29 cell line) and Gram-negative bacterial strain, Escherichia coli (E. coli). Furthermore, the light-induced cytotoxic properties in vitro are confirmed by various tests, including lactate dehydrogenase (LDH) assay for cell membrane damage and caspase assay for apoptosis determination. Indeed, the delivered PpIX molecules from PMOs generated deadly singlet oxygen species intracellularly under visible light irradiation, resulting in cell death through concomitantly triggered apoptotic caspases. Together, our findings demonstrate that this post-modified PMO design is highly advantageous and can be used as an effective PDT platform.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Nanoparticles , Neoplasms/drug therapy , Photochemotherapy/methods , Anti-Bacterial Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Escherichia coli/drug effects , HT29 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...