Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1836: 148954, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38649135

ABSTRACT

Parkinson's disease (PD) is a multifactorial neurodegenerative disorder whose cause is unclear. Neuroinflammation is recognized as one of the major pathogenic mechanisms involved in the development and progression of PD. NLRP3 inflammasome is the most widely studied inflammatory mediator in various diseases including PD. Several phytoconstituents have shown neuroprotective role in PD. Carvacrol is a phenolic monoterpene commonly found in the essential oils derived from plants belonging to Lamiaceae family. It is well known for its anti-inflammatory and antioxidant properties and has been widely explored in several diseases. In this study, we explored the role of Carvacrol in suppressing neuroinflammation by regulating NLRP3 inflammasome through Nrf2/HO-1 axis and subsequently, inflammatory cytokines like IL-1ß, IL-18 in Rotenone induced PD mice model. Three doses (25 mg/kg, 50 mg/kg, 100 mg/kg p.o.) of Carvacrol were administered to, respectively, three groups (LD, MD, HD), one hour after administration of Rotenone (1.5 mg/kg, i.p.), every day, for 21 days. Treatment with Carvacrol ameliorated the motor impairment caused by Rotenone. It alleviated neurotoxicity and reduced inflammatory cytokines. Further, Carvacrol also alleviated oxidative stress and increased antioxidant enzymes. From these results, we show that Carvacrol exerts neuroprotective effects in PD via anti-inflammatory and antioxidant mechanisms and could be a potential therapeutic option in PD.


Subject(s)
Cymenes , Disease Models, Animal , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroprotective Agents , Rotenone , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Cymenes/pharmacology , Mice , Neuroprotective Agents/pharmacology , Male , Inflammasomes/metabolism , Inflammasomes/drug effects , Heme Oxygenase (Decyclizing)/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology , Membrane Proteins , Heme Oxygenase-1
2.
Drug Discov Today ; 28(8): 103647, 2023 08.
Article in English | MEDLINE | ID: mdl-37263389

ABSTRACT

Ocular drug delivery is enigmatic on account of various physiological precorneal barriers that ultimately hinder efficient drug penetration and corneal absorption. Ultradeformable vesicles embody non-ionic surfactants, edge activators and vesicular builders that provide enormous elasticity and deformability. The elastic vesicles can cross the ocular barriers owing to their peculiar squeezability and distorting ability and, thus, establish an infallible shot for ocular delivery. This review provides an overview of the recent advancements and updates of elastic vesicles as effective ocular drug delivery vehicles.


Subject(s)
Drug Delivery Systems , Liposomes , Eye , Excipients/pharmacology , Drug Carriers/pharmacology , Skin , Administration, Cutaneous
3.
Biochem Pharmacol ; 210: 115496, 2023 04.
Article in English | MEDLINE | ID: mdl-36907495

ABSTRACT

Neuroinflammation is a critical degradative condition affecting neurons in the brain. Progressive neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease (PD) have been strongly linked to neuroinflammation. The trigger point for inflammatory conditions in the cells and body is the physiological immune system. The immune response mediated by glial cells and astrocytes can rectify the physiological alterations occurring in the cell for the time being but prolonged activation leads to pathological progression. The proteins mediating such an inflammatory response, as per the available literature, are undoubtedly GSK-3ß, NLRP3, TNF, PPARγ, and NF-κB, along with a few other mediatory proteins. NLRP3 inflammasome is undeniably a principal instigator of the neuroinflammatory response, but the regulatory pathways controlling its activation are still unclear, besides less clarity for the interplay between different inflammatory proteins. Recent reports have suggested the involvement of GSK-3ß in regulating NLRP3 activation, but the exact mechanistic pathway remains vague. In the current review, we attempt to provide an elaborate description of crosstalk between inflammatory markers and GSK-3ß mediated neuroinflammation progression, linking it to regulatory transcription factors and posttranslational modification of proteins. The recent clinical therapeutic advances targeting these proteins are also discussed in parallel to provide a comprehensive view of the progress made in PD management and lacunas still existing in the field.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , Glycogen Synthase Kinase 3 beta , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein , Inflammation
4.
Int Immunopharmacol ; 116: 109793, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36731149

ABSTRACT

Piceatannol (PCN), a SIRT1 activator, regulates multiple oxidative stress mechanism and has anti-inflammatory potential in various inflammatory conditions. However, its role in Diabetic insulted peripheral neuropathy (DN) remains unknown. Oxidative stress and mitochondrial dysfunction are major contributing factors to DN. Myriad studies have proven that sirtuin1 (SIRT1) stimulation convalesce nerve functions by activating mitochondrial functions like mitochondrial biogenesis and mitophagy. Diabetic neuropathy (DN) was provoked by injecting streptozotocin (STZ) at a dose of 55 mg/kg, i.p to male Sprague Dawley (SD) rats. Mechanical, thermal hyperalgesia was evaluated by using water immersion, Vonfrey Aesthesiometer, and Randall Sellito Calipers. Motor, sensory nerve conduction velocity was measured using Power Lab 4sp system whereas The Laser Doppler system was used to evaluate nerve blood flow. To induce hyperglycemia for the in vitro investigations, high glucose (HG) (30 mM) conditions were applied to Neuro2a cells. At doses of 5 and 10 µM, PCN was examined for its role in SIRT1 and Nrf2 activation. HG-induced N2A cells, reactive oxygen exposure, mitochondrial superoxides and mitochondrial membrane potentials were restored by PCN exposure, and their neurite outgrowth was enhanced. Peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) directed mitochondrial biogenesis was induced by increased SIRT1 activation by piceatannol. SIRT1 activation also enhanced Nrf2-mediated antioxidant signalling. Our study results inferred that PCN administration can counteract the decline in mitochondrial function and antioxidant activity in diabetic rats and HG-exposed N2A cells by increasing the SIRT1 and Nrf2 activities.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Hyperglycemia , Neurotoxicity Syndromes , Rats , Male , Animals , Diabetic Neuropathies/drug therapy , Rats, Sprague-Dawley , Neuroprotection , Mitophagy , Sirtuin 1/metabolism , NF-E2-Related Factor 2 , Antioxidants/pharmacology , Oxidative Stress , Hyperglycemia/drug therapy
5.
Int J Pharm ; 628: 122270, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36228882

ABSTRACT

Melanoma is a form of skin cancer that starts in melanocytes. Rampant chemo-resistance, metastasis, and inability to cross the skin barriers and accumulate within the tumor microenvironment render the conventional chemotherapeutic approaches ineffective. Simvastatin (SIM), a cholesterol synthesis inhibitor, has shown tremendous anticancer potential. Due to the lack of therapeutic alternatives, repositioning SIM in melanoma could be beneficial. Incorporating SIM within the nanoparticles promoted increased melanoma cell internalization, apoptosis, and sustained release profile. Further, the incorporation of nanoparticles into the thermogel facilitated depot formation over the upper dermal layers. Sol-to-gel transition at 34 °C was observed with a 14.03-fold increase in viscosity. This could be fruitful in limiting systemic exposure and preventing adverse effects. Entrapment of SIM in the PLGA NPs enhanced the cytotoxicity by 9.38-fold (p less than 0.05). Nuclear staining with DAPI showed blebbing, membrane shrinkage, and apoptosis confirmed by DCFDA and acridine orange/ethidium bromide staining. Ex vivo diffusion studies revealed the accumulation of C-6 loaded nanoparticles incorporated within the thermogel onto the upper dermal layer and depot formation up to 6 h. Thus, we conclude that SIM-loaded nanoparticulate thermogel could be an efficacious therapeutic alternative for melanoma.


Subject(s)
Melanoma , Nanoparticles , Humans , Simvastatin/pharmacology , Melanoma/drug therapy , Tumor Microenvironment
6.
Eur J Pharm Biopharm ; 180: 119-136, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36198344

ABSTRACT

Melanoma is the most malignant form of skin cancer across the globe. Conventional therapies are currently ineffective which could be attributed to the rampant chemo-resistance, metastasis, inability to cross the skin barriers and accumulate within the tumor microenvironment. This advent brings in the principles of drug repurposing by repositioning Niclosamide (NIC), an anthelmintic drug for skin cancer. Incorporation into the liposomes facilitated enhanced melanoma cell uptake and apoptosis. Cytotoxicity studies revealed 1.756-fold enhancement in SK-MEL-28 cytotoxicity by NIC-loaded liposomes compared to free drug. Qualitative and quantitative cell internalization indicated greater drug uptake within the melanoma cells illustrating the efficacy of liposomes as efficient carrier systems. Nuclear staining showed blebbing and membrane shrinkage. Elevated ROS levels and apoptosis shown by DCFDA and acridine orange-ethidium bromide staining revealed greater melanoma cell death by liposomes compared to free drug. Incorporating NIC liposomes into the thermogel system restricted the liposomes as a depot onto the upper skin layers. Sustained zero order release up to 48 h with liposomes and 23.58-fold increase in viscosity led to the sol-to-gel transition at 33℃ was observed with liposomal thermogel. Ex vivo gel permeation studies revealed that C-6 loaded liposomes incorporated within the thermogel successfully formed a depot over the upper skin layer for 6 h to prevent transdermal delivery and systemic adverse effects. Thus, it could be concluded that NIC loaded liposomal thermogel system could be an efficacious therapeutic alternative for the management of melanoma.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Liposomes , Niclosamide/pharmacology , Administration, Cutaneous , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Tumor Microenvironment
7.
Int J Pharm ; 625: 122101, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35961415

ABSTRACT

As of today, the era of nanomedicine has brought numerous breakthroughs and overcome challenges in the treatment of various disorders. Various factors like size, charge and surface hydrophilicity have garnered significant attention by nanotechnologists. However, more exploration in the field of nanoparticle shape and geometry, one of the basic physical phenomenon is required. Tuning nanoparticle shape and geometry could potentially overcome pitfalls in therapeutics and biomedical fields. Thus, in this article, we unveil the importance of tuning nanoparticle shape selection across the delivery platforms. This article provides an in-depth understanding of nanoparticle shape modulation and advise the researchers on the ideal morphology selection tailored for each implication. We deliberated the importance of nanoparticle shape selection for specific implications with respect to organ targeting, cellular internalization, pharmacokinetics and bio-distribution, protein corona formation as well as RES evasion and tumor targeting. An additional section on the significance of shape transformation, a recently introduced novel avenue with applications in drug delivery was discussed. Furthermore, regulatory concerns towards nanoparticle shape which need to be addressed for harnessing their clinical translation will be explained.


Subject(s)
Nanoparticles , Protein Corona , Drug Delivery Systems , Nanomedicine/methods , Nanoparticles/metabolism , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...