Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr C Struct Chem ; 80(Pt 2): 30-36, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38275159

ABSTRACT

Three new compounds, namely, 5-fluorocytosine-urea (2/1), 2C4H4FN3O·CH4N2O, (I), 5-fluorocytosine-5-fluorocytosinium 3,5-dinitrosalicylate-water (2/1/1), 2C4H4FN3O·C4H5FN3O+·C7H2N2O7-·H2O, (II), and 2-amino-4-chloro-6-methylpyrimidine-6-chloronicotinic acid (1/1), C6H4ClNO2·C5H6ClN3, (III), have been synthesized and characterized by single-crystal X-ray diffraction. In compound (I), 5-fluorocytosine (5FC) molecules A and B form two different homosynthons [R22(8) ring motif], one formed via N-H...O hydrogen bonds and the second via N-H...N hydrogen bonds. In addition to this interaction, a sequence of fused-ring motifs [R21(6), R33(8), R22(8), R43(10) and R22(8)] are formed, generating a supramolecular ladder-like hydrogen-bonded pattern. In compound (II), 5FC and 5-fluorocytosinium are linked by triple hydrogen bonds, generating two fused-ring motifs [R22(8)]. The neutral 5FC and protonated 5-fluorocytosinum cation form a dimeric synthon [R22(8) ring motif] via N-H...O and N-H...N hydrogen bonds. On either side of the dimeric synthon, the neutral 5FC, 5-fluorocytosinium cation, 3,5-dinitrosalicylate anion and water molecule are hydrogen bonded through N-H...O, N-H...N, N-H...OW and OW-HW...O hydrogen bonds, forming a large ring motif [R1010(56)], leading to a three-dimensional supramolecular network. In compound (III), 2-amino-4-chloro-6-methylpyrimidine (ACP) interacts with the carboxylic acid group of 6-chloronicotinic acid via N-H...O and O-H...O hydrogen bonds, generating an R22(8) primary ring motif. Furthermore, the ACP molecules form a base pair via N-H...N hydrogen bonds. The primary motif and base pair combine to form tetrameric units, which are further connected by Cl...Cl interactions. In addition to this hydrogen-bonding interaction, compounds (I) and (III) are further enriched by π-π stacking interactions.

2.
Acta Crystallogr C Struct Chem ; 79(Pt 10): 435-442, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37746935

ABSTRACT

Four salts, namely, 2,4,6-triaminopyrimidinium 6-chloronicotinate dihydrate, C4H8N5+·C6H3ClNO2-·2H2O, (I), 2,4,6-triaminopyrimidinediium pyridine-2,6-dicarboxylate dihydrate, C4H9N52+·C7H3NO42-·2H2O, (II), 2,4,6-triaminopyrimidinediium sulfate monohydrate, C4H9N52+·SO42-·H2O, (III), and 2,4,6-triaminopyrimidinium 3,5-dinitrobenzoate dihydrate, C4H8N5+·C7H3N2O6-·2H2O, (IV), were synthesized and characterized by X-ray diffraction techniques. Proton transfer from the corresponding acid to the pyrimidine base has occurred in all four crystal structures. Of the four salts, two [(I) and (IV)] exist as monoprotonated bases and two [(II) and (III)] exist as diprotonated bases. In all four crystal structures, the acid interacts with the pyrimidine base through N-H...O hydrogen bonds, generating an R22(8) ring motif. The sulfate group mimics the role of the carboxylate anions. The water molecules present in compounds (I)-(IV) form water-mediated large ring motifs. The formation of water-mediated interactions in these crystal structures can be used as a model in the study of the hydration of nucleobases. Water molecules play an important role in building supramolecular structures. In addition to these strong hydrogen-bonding interactions, some of the crystal structures are further enriched by aromatic π-π stacking interactions [(I) and (II)].

SELECTION OF CITATIONS
SEARCH DETAIL
...