Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
J Mater Chem B ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958687

ABSTRACT

In a number of recently published experimental studies from our research group, the positive impact of magnetic stimuli (static/pulsed) on cell functionality modulation or bactericidal effects, in vitro, has been established. In order to develop a theoretical understanding of such magnetobiological effects, the present study aimed to present two quantitative models to determine magnetic Maxwell stresses as well as pressure acting on the cell membrane, under the influence of a time varying magnetic field. The model predicts that magnetic field-induced stress on the cell/bacteria is dependent on the conductivity properties of the extracellular region, which is determined to be too low to cause any significant effect. However, the force on the cell/bacteria due to the induced electric field is more influential than that of the magnetic field, which has been used to determine the membrane tension that can cause membrane poration. With a known critical membrane tension for cells, the field parameters necessary to cause membrane rupture have been estimated. Based on the experimental results and theoretically predicted values, the field parameters can be classified into three regimes, wherein the magnetic fields cause no effect or result in biophysical stimulation or induce cell death due to membrane damage. Taken together, this work provides some quantitative insights into the impact of magnetic fields on biological systems.

2.
J Pharm Bioallied Sci ; 16(Suppl 2): S1481-S1486, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882768

ABSTRACT

Artificial intelligence (AI) is an emerging tool in modern medicine and the digital world. AI can help dentists diagnose oral diseases, design treatment plans, monitor patient progress and automate administrative tasks. The aim of this study is to evaluate the perception and attitude on use of artificial intelligence in dentistry for diagnosis and treatment planning among dentists and non-dentists' population of south Tamil Nadu region in India. Materials and Methods: A cross sectional online survey conducted using 20 close ended questionnaire google forms which were circulated among the dentists and non -dentists population of south Tamil Nadu region in India. The data collected from 264 participants (dentists -158, non-dentists -106) within a limited time frame were subjected to descriptive statistical analysis. Results: 70.9% of dentists are aware of artificial intelligence in dentistry. 40.5% participants were not aware of AI in caries detection but aware of its use in interpretation of radiographs (43.9%) and in planning of orthognathic surgery (42.4%) which are statistically significant P < 0.05.44.7% support clinical experience of a human doctor better than AI diagnosis. Dentists of 54.4% agree to support AI use in dentistry. Conclusion: The study concluded AI use in dentistry knowledge is more with dentists and perception of AI in dentistry is optimistic among dentists than non -dentists, majority of participants support AI in dentistry as an adjunct tool to diagnosis and treatment planning.

3.
Soft Matter ; 20(7): 1499-1522, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38265310

ABSTRACT

The interaction between two edge dislocations in a sheared lyotropic lamellar liquid-crystalline medium is examined. The model is a mesoscale hydrodynamic model based on a free-energy functional that is minimised for a sinusoidal concentration modulation coupled with concentration and momentum equations. The defect dynamics are analysed as a function of the system size and the Ericksen number, the ratio of the shear stress and the characteristic free-energy density for deformation. Three different regimes are observed as the Ericksen number is increased when the edge dislocations are sheared towards each other, such that there is compression of layers between the defects: (a) defect motion that reduces the cross-stream separation till there is a steady spacing with plug flow between the defects, (b) defect attraction and cancellation resulting in a well-aligned state, and (c) defect creation due to a compressional instability between the defects resulting in an increase in the disorder. When the edge dislocations are sheared away from each other, such that there is extension of the layers between the defects, two distinct regimes are observed as the Ericksen number is increased: (a) bending of layers and a plug flow between the defects at their initial separation, and (b) buckling of the layers leading to creation of more defects and a dynamical steady state between defect creation and cancellation. These regimes are found to be robust for different values of the system size, from 32 to 128 layers, and for different values of the dimensionless groups that characterise the ratio of mass/momentum convection and diffusion.

4.
Soft Matter ; 19(28): 5262-5287, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37401735

ABSTRACT

The evolution of a lamellar mesophase from an initially disordered state under shear is examined using simulations of a mesoscale model based on a concentration field ψ that distinguishes the hydrophilic and hydrophobic components. The Landau-Ginzburg free-energy functional is augmented by a term that is minimised for sinusoidal modulations in the concentration field with wavelength λ = (2π/k), and the dynamical equations are the model H equations. The structure and rheology are determined by the relative magnitudes of the diffusion time for coarsening, (λ2/D) and the inverse of the strain rate -1, and the Ericksen number, which is the ratio of the shear stress and the layer stiffness. When the diffusion time is small compared with the inverse of the strain rate, there is a local formation of misaligned layers, which are deformed by the imposed flow. There is near-perfect ordering with isolated defects at low values of the Ericksen number, but the defects result in a significant increase in viscosity due to the high layer stiffness. At high values of the Ericksen number, the concentration field is deformed by the mean shear before layers form via diffusion. Cylindrical structures aligned along the flow direction form after about 8-10 strain units, and these evolve into layers with disorder through diffusion perpendicular to the flow. The layers are not perfectly ordered, even after hundreds of strain units, due to the creation and destruction of defects via shear. The excess viscosity is low because the layer stiffness is small compared with the applied shear at a high Ericksen number. This study provides guidance on how the material parameters and imposed flow can be tailored to achieve the desired rheological behaviour.

5.
PeerJ Comput Sci ; 9: e1308, 2023.
Article in English | MEDLINE | ID: mdl-37346706

ABSTRACT

In the medical era, wearables often manage and find the specific data points to check important data like resting heart rate, ECG voltage, SPO2, sleep patterns like length, interruptions, and intensity, and physical activity like kind, duration, and levels. These digital biomarkers are created mainly through passive data collection from various sensors. The critical issues with this method are time and sensitivity. We reviewed the newest wireless communication trends employed in hospitals using wearable technology and privacy and Block chain to solve this problem. Based on sensors, this wireless technology controls the data gathered from numerous locations. In this study, the wearable sensor contains data from the various departments of the system. The gradient boosting method and the hybrid microwave transmission method have been proposed to find the location and convince people. The patient health decision has been submitted to hybrid microwave transmission using gradient boosting. This will help to trace the mobile phones using the calls from the threatening person, and the data is gathered from the database while tracing. From this concern, the data analysis process is based on decision-making. They adapted the data encountered by the detailed data in the statistical modeling of the system to produce exploratory data analysis for satisfying the data from the database. Complete data is classified with a 97% outcome by removing unwanted data and making it a 98% successful data classification.

6.
Phys Rev E ; 104(5-1): 054609, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942830

ABSTRACT

In this article, we propose a traffic rule inspired from nature that instructs how a crowd made up of inert agents should respond to an elite agent to facilitate its motion through the crowd. When an object swims in a fluid medium or an intruder is forced through granular matter, characteristic flow fields are created around them. We show that if inert agents made small movements based on a traffic rule derived from these characteristic flow fields, then they efficiently reorganize and transport enough space for the elite to pass through. The traffic rule used in the article is a dipole field which satisfactorily captures the features of the flow fields around a moving intruder. We study the effectiveness of this dipole traffic rule using numerical simulations in a two-dimensional periodic domain, where one self-propelled elite agent tries to move through a crowd of inert agents that prefer to stay in a state of rest. Simulations are carried out for a wide range of strengths of the traffic rule and packing densities of the crowd. We characterize and analyze four regions in the parameter space-free-flow, motion due to cooperation and frozen and collective drift regions-and discuss the consequence of the traffic rule in light of the collective behavior observed. We believe that the proposed method can be of use in a swarm of robots working in constrained environments.

7.
Sci Rep ; 10(1): 20273, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33199745

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Sci Rep ; 9(1): 18583, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819075

ABSTRACT

We demonstrate a proprietary lab-on-chip/µ TAS technology platform for a regulatory grade portable instrument for complete blood count (CBC) hematology tests including 3 part differential WBCs, RBCs, platelet and hemoglobin for rapid diagnostics at the point of care in resource-poor settings. Presently, diagnostics based on blood tests are confined to centralized laboratory settings, dependent on large footprint and expensive cytometers or on a microscope, requiring trained laboratory technicians. Consequently, such facilities are not present in rural and semi-urban settings, where there are opportunities and challenges in delivering efficient healthcare infrastructure at an affordable cost in resource-challenged environments. Our proposed design leverages advances in microfluidics and lab-on-chip fabrication techniques to miniaturize the conventional cytometer and bring down the cost significantly. The device can be operated autonomously, without skilled manpower, by primary healthcare professionals in the field and by patients (like glucose self-test devices). The instrument consists of a single-use chip, the size of a credit card, pre-loaded with reagents, in which the sample is loaded, and which is fluidically insulated from the environment. The controller, the size of a toaster, performs the necessary fluid handling and the impedance measurements to deliver the results in minutes.


Subject(s)
Blood Cell Count , Hematology/instrumentation , Point-of-Care Systems , Automation , Blood Glucose/analysis , Equipment Design , Erythrocyte Count , Humans , Lab-On-A-Chip Devices , Leukocyte Count , Microfluidics
9.
Biomaterials ; 209: 54-66, 2019 07.
Article in English | MEDLINE | ID: mdl-31026611

ABSTRACT

A number of experimental studies have established the critical role of electric field stimulation on cell functionality modulation of various cell types on a wide range of biomaterial platforms in vitro. In particular, cell fate processes, morphological changes and electroporation are significantly modulated over a narrow range of electric field stimulation conditions. Although a few studies using electrical network theory, first principle simulations and electrohydrodynamic models are reported in the literature, the present study establishes a theoretical foundation to a new perspective that bioelectric stress can significantly influence cell morphological changes/electroporation and in a broader sense, the cell response to electric field on biomaterial substrates. A single cell is modelled as a spherical membrane separating the culture medium and the cytoplasm having different dielectric properties. The analytical solutions to the Laplace equation and Poisson equation for the system are adopted to quantitatively capture the potential distribution in the cellular microenvironment for different cases. These include a cell on a conducting substrate, on an insulating substrate and a cell with surface charge density, in electric field stimulated cellular microenvironment. The biophysical significance of the normal stress distribution has been discussed in terms of the variation in the cellular deformation, depending on the frequency of the electric field and substrate conductivity. A significant difference has been observed in the deformation behavior at higher frequencies (>109 Hz) compared to low frequency and DC electric fields. This theoretical study therefore unravels the significance of substrate conductivity in synergy with electric field parameters to modulate cell response. In addition, the tangential component of the Maxwell stress tensor (shear stress), a measure of the stretching force on the membrane, has been used to obtain estimates of the critical electric field required for membrane rupture. It has been predicted that a cell with surface charge density requires electric fields of the order of 10 kV/mm in order to undergo membrane rupture, which is in line with the experimental observations reported in the literature. Taken together, the presented analysis is expected to provide guidelines to develop next generation biomaterials and biomedical devices for regenerative medicine and cancer treatments.


Subject(s)
Biocompatible Materials/chemistry , Biophysics/methods , Cellular Microenvironment/physiology , Electric Stimulation
10.
Acta Biomater ; 81: 169-183, 2018 11.
Article in English | MEDLINE | ID: mdl-30273744

ABSTRACT

The development and application of nanofibres requires a thorough understanding of the mechanical properties on a single fibre level including respective modelling tools for precise fibre analysis. This work presents a mechanical and morphological study of poly-l-lactide nanofibres developed by needleless electrospinning. Atomic force microscopy (AFM) and micromechanical testing (MMT) were used to characterise the mechanical response of the fibres within a diameter range of 200-1400 nm. Young's moduli E determined by means of both methods are in sound agreement and show a strong increase for thinner fibres below a critical diameter of 800 nm. Similar increasing trends for yield stress and hardening modulus were measured by MMT. Finite element analyses show that the common practice of modelling three-point bending tests with either double supported or double clamped beams is prone to significant bias in the determined elastic properties, and that the latter is a good approximation only for small diameters. Therefore, an analytical formula based on intermediate boundary conditions is proposed that is valid for the whole tested range of fibre diameters, providing a consistently low error in axial Young's modulus below 10%. The analysis of fibre morphology by differential scanning calorimetry and 2D wide-angle X-ray scattering revealed increasing polymer chains alignment in the amorphous phase and higher crystallinity of fibres for decreasing diameter. The combination of these observations with the mechanical characterisation suggests a linear relationship between Young's modulus and both crystallinity and molecular orientation in the amorphous phase. STATEMENT OF SIGNIFICANCE: Fibrous membranes have rapidly growing use in various applications, each of which comes with specific property requirements. However, the development and production of nanofibre membranes with dedicated mechanical properties is challenging, in particular with techniques suitable for industrial scales such as needleless electrospinning. It is therefore a key step to understand the mechanical and structural characteristics of single nanofibres developed in this process, and to this end, the present work presents changes of internal fibre structure and mechanical properties with diameter, based on dedicated models. Special attention was given to the commonly used models for analyzing Young's modulus of single nanofibers in three-point bending tests, which are shown to be prone to large errors, and an improved robust approach is proposed.


Subject(s)
Biocompatible Materials/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Elastic Modulus
11.
Phys Chem Chem Phys ; 20(30): 20247-20256, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30039126

ABSTRACT

We report the synthesis of single crystalline octahedron-shaped magnetite microcrystals, the preparation of magnetorheological fluids (MRFs) and their magnetorheological properties under steady-state shear conditions. The magnetite microcrystals were synthesized via the template-free hydrothermal route. MRFs with three different particle concentrations (10, 20 and 40 weight%) were prepared and were subjected to steady shear conditions at various externally applied magnetic fields of strength up to 1.2 T. The shear rates were chosen up to high enough values to observe the yield behaviour of the MRFs. The dynamic yield strengths of MRFs, estimated using the Bingham plastic model fit to the steady-state shear response curves, showed that they scale-up with the applied magnetic field strength and amount of magnetic particles in the fluid. The origin of the mechanical strength in the MRFs due to the inter-particle interaction is explained using a simple dipolar model. The observed high yield strengths of the MRFs were explained on the basis of the particle shape (octahedrons) and magnetic nature (saturation magnetization). By comparing the values of the yield strength with the on-state to off-state viscosity ratio for the MRFs (for each particle concentration), an optimum content of particles in the carrier fluid to obtain high efficiency is suggested. Because the particles are single crystalline, the off-state viscosity of the MRFs even at the highest studied (40 wt%) particle concentration was very low, which is ideal for their application as quickly responding MRFs.

12.
Soft Matter ; 14(26): 5407-5419, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29932191

ABSTRACT

We report the magnetic field and particle-concentration dependent steady-state shear-responses of rod shaped Li-Zn ferrite particle based magnetorheological fluids (MRFs). Rod-shaped soft ferrimagnetic Li-Zn ferrite (Li0.4Zn0.2Fe2.4O4) particles were synthesized using the combustion synthesis method. MRFs of three different particle-concentrations (φ = 0.1, 0.2 and 0.4, in weight fraction) were prepared using silicone oil. Their yield strength and dynamic viscosity were studied at different applied magnetic fields (B). With an increase in B and φ, the yield strength (τY) of the MRFs increases. This behaviour is assigned to the formation of stronger columnar structures of the magnetically interacting particles which resist the flow (shear) of the MRF. For the MRF with φ = 0.4 and B = 1.2 T, we observed a maximum τY value of ∼1.25 kPa. Furthermore, we observed that, based on the on-state to off-state viscosity ratio (ηon/ηoff) at a particular operating B value, the optimum particle concentration required for energy- and cost-efficient operation of the MRFs can be chosen. The absence of a stabilizing-agent or de-agglomerating-coating, the low density, and the excellent oxidation- and corrosion-resistance of the soft ferrimagnetic rod-shaped Li-Zn ferrite particles make this MRF-system highly versatile and economical for many magneto-mechanical applications.

13.
Phys Rev E ; 97(1-1): 012902, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29448432

ABSTRACT

Dense granular flows have been well described by the Bagnold rheology, even when the particles are in the multibody contact regime and the coordination number is greater than 1. This is surprising, because the Bagnold law should be applicable only in the instantaneous collision regime, where the time between collisions is much larger than the period of a collision. Here, the effect of particle stiffness on rheology is examined. It is found that there is a rheological threshold between a particle stiffness of 10^{4}-10^{5} for the linear contact model and 10^{5}-10^{6} for the Hertzian contact model above which Bagnold rheology (stress proportional to square of the strain rate) is valid and below which there is a power-law rheology, where all components of the stress and the granular temperature are proportional to a power of the strain rate that is less then 2. The system is in the multibody contact regime at the rheological threshold. However, the contact energy per particle is less than the kinetic energy per particle above the rheological threshold, and it becomes larger than the kinetic energy per particle below the rheological threshold. The distribution functions for the interparticle forces and contact energies are also analyzed. The distribution functions are invariant with height, but they do depend on the contact model. The contact energy distribution functions are well fitted by Gamma distributions. There is a transition in the shape of the distribution function as the particle stiffness is decreased from 10^{7} to 10^{6} for the linear model and 10^{8} to 10^{7} for the Hertzian model, when the contact number exceeds 1. Thus, the transition in the distribution function correlates to the contact regime threshold from the binary to multibody contact regime, and is clearly different from the rheological threshold. An order-disorder transition has recently been reported in dense granular flows. The Bagnold rheology applies for both the ordered and disordered states, even though the rheological constants differ by orders of magnitude. The effect of particle stiffness on the order-disorder transition is examined here. It is found that when the particle stiffness is above the rheological threshold, there is an order-disorder transition as the base roughness is increased. The order-disorder transition disappears after the crossover to the soft-particle regime when the particle stiffness is decreased below the rheological threshold, indicating that the transition is a hard-particle phenomenon.

14.
ACS Biomater Sci Eng ; 3(6): 1154-1171, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-33429590

ABSTRACT

One of the central themes in cell and tissue engineering is to develop an understanding as to how biophysical cues can influence cell functionality changes. The flow induced shear stress is regarded as one such biophysical cue to influence physiological changes in shear-sensitive tissues, in vivo. The origin of such phenomena is, however, poorly understood. While addressing such an issue, the present work demonstrates the intriguing synergistic effect of shear stress and spatial constraints in inducing aligned growth and differentiation of myoblast cells to myotubes. In a planned set of in vitro experiments, the regulation of laminar flow regime within a narrow window was obtained in a PMMA-based Lab-on-Chip (LOC) device, wherein the murine muscle cells (C2C12), chosen for their phenotypical differentiation stages, were cultured under graded shear conditions. The two factors of shear stress and spatial allowance were decoupled by another two sets of experiments. This aspect has been conclusively established using a PMMA device having a fixed width microchannel with varying shear and an identical amount of shear with different width of channels. On the basis of the extensive analysis of biochemical assays (WST-1, picogreen) together with gene expression using qRT-PCR and cell morphological changes (fluorescence/confocal microscopy), extensive differentiation of the myoblasts into myotubes is found to be dependent on both shear stress and spatial allocation with a maximum at an optimal shear of ca. 16 mPa. Quantitatively, the mRNA expression of myogenic biomarkers, i.e., myogenin, MyoD, and neogenin, exhibited 10- to 50-fold changes at ca. 16 mPa shear flow, compared to that under static conditions. Also, myotube aspect ratio and myotube density are modulated with shear stress and are in commensurate with gene expression changes. The flow cytometry analysis further confirmed that the cell cycle arrest at the G1/G0 phase triggers the onset of myogenesis. Taken together, the present study unambiguously establishes qualitative and quantitative biophysical basis for the origin of myogenesis toward the critical shear stress of murine myoblasts in a microfludic device, in vitro.

15.
Nanotechnology ; 27(30): 305401, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27302373

ABSTRACT

Conductive, carbon-free, electrocatalytically active, nanostructured electrodes with ultra-low platinum loading were fabricated using self-assembly of octadecanethiol-coated Au@Pt nanoparticles followed by RF plasma treatment. Bilayer arrays of Au@Pt nanoparticles with platinum loadings of 0.50, 1.04, 1.44, and 1.75 µg cm(-2) (corresponding to 0.5, 1, 1.5 and 2 atomic layer coverage of platinum on nominally 5 nm gold core) were subjected to RF argon plasma treatment for various durations and their electrical conductivity, morphological evolution, and electrocatalytic activity characterized. Samples with monolayer and above platinum coverages exhibit maximum electrochemically active surface areas values of ∼100 m(2)/gpt and specific activities that are ∼4× to 6× of a reference platinum nanoparticle bilayer array. The underlying gold core influences the structural evolution of the samples upon RF plasma treatment and leads to the formation of highly active Pt(110) facets on the surface at an optimal plasma treatment duration, which also corresponds to the onset of a sharp decline in lateral sheet resistance. The sample having a two atom thick platinum coating has the highest total mass activity of 48 ± 3 m(2)/g(pt+au), corresponding to 44% Pt atom utilization, while also exhibiting enhanced CO tolerance as well as high methanol oxidation reaction and oxygen reduction reaction activity.

16.
Phys Rev E ; 93(3): 032609, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27078416

ABSTRACT

The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ργL(2)/µ), the Schmidt number (µ/ρD), the Ericksen number (µÎ³/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts µ(r), and the ratio of the system size and layer spacing (L/λ). Here, ρ and µ are the fluid density and average viscosity, γ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, µ(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/λ=32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers. At high Ericksen number where the viscous forces are large compared to the restoring forces due to layer compression and bending, shear tends to homogenize the concentration field, and the viscosity decreases significantly. At very high Ericksen number, shear even disrupts the layering of the lamellar phase. At low Ericksen number, shear results in the formation of well aligned layers with edge dislocations. However, these edge dislocations take a long time to anneal; the relatively small misalignment due to the defects results in a large increase in viscosity due to high layer stiffness and due to shear localization, because the layers between defects get pinned and move as a plug with no shear. An increase in the viscosity contrast between the hydrophilic and hydrophobic parts does not alter the structural characteristics during alignment. However, there is a significant increase in the viscosity, due to pinning of the layers between defects, which results in a plug flow between defects and a localization of the shear to a part of the domain.

17.
Indian J Gastroenterol ; 35(1): 48-54, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26873087

ABSTRACT

BACKGROUND: Liver transplantation has become common in India over the last decade and biliary strictures after the procedure cause a significant morbidity. Endoscopic retrograde cholangiopancreatography (ERCP) is a safe and effective treatment modality for post-transplant biliary strictures so we decided to evaluate prospectively the outcomes of endoscopic treatment in post-living donor liver transplantation (LDLT) biliary strictures. METHODS: We studied ten consecutive patients who had developed biliary strictures (out of 312 who had undergone liver transplantation between June 2009 and June 2013) and had been referred to the Department of Gastroenterology for management. All patients underwent liver function tests, ultrasound of the abdomen, magnetic resonance cholangiography and liver biopsy, if this was indicated. RESULTS: Of these 312 patients who underwent liver transplantation, 305 had living donors (LDLT) and 7 deceased donors (DDLT). Ten patients in the LDLT group (3.3%) developed biliary strictures. There were seven males and three females who had median age of 52 years (range 4-60 years). The biliary anastomosis was duct-to-duct in all patients with one patient having an additional duct-to-jejunum anastomosis. The mode of presentation was cholangitis in four patients (40%), asymptomatic elevation of liver enzymes in four (40%) and jaundice in two patients (20%). The median time from transplantation to the detection of the stricture was 12 months (2-42.5 months). ERCP was attempted as initial therapy in all patients: seven were managed entirely by endoscopic therapy, and three required a combined percutaneous and endoscopic approach. Cholangiography demonstrated anastomotic stricture in all patients. A total of 32 sessions of ERCP were done with mean of 3.2 (2-5) endoscopic sessions and 3.4 (1-6) stents required to resolve the stricture. The median time from the first intervention to stricture resolution was 4 months (range 2-12 months). In four patients, the stents were removed after one session and in two patients each after two, three and four sessions. In six patients more than one stent was placed and all of them required dilatation of stricture. Seven patients completed treatment and are off stents at a median follow up period of 9.5 months (7-11 months). Two patients developed recurrence of their stricture after 7.5 months. Both had long strictures and required a combined endoscopic and percutaneous approach. There was one mortality due to sepsis secondary to cholangitis. CONCLUSIONS: Post-LDLT biliary strictures can be successfully treated with ERCP, and most patients remain well on follow up (median 9.5 months). A combined endoscopic and percutaneous approach is useful when ERCP alone fails.


Subject(s)
Bile Ducts/pathology , Bile Ducts/surgery , Cholangiopancreatography, Endoscopic Retrograde , Cholestasis/surgery , Liver Transplantation/adverse effects , Postoperative Complications/surgery , Tertiary Care Centers , Adolescent , Adult , Child , Child, Preschool , Constriction, Pathologic , Female , Follow-Up Studies , Humans , India , Living Donors , Male , Middle Aged , Prospective Studies , Treatment Outcome , Young Adult
18.
J Chem Phys ; 145(24): 244901, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-28049316

ABSTRACT

The structural and rheological evolution of an initially disordered lamellar phase system under a shear flow is examined using a mesoscale model based on a free energy functional for the concentration field, which is the scaled difference in the concentration between the hydrophilic and hydrophobic components. The dimensionless numbers which affect the shear evolution are the Reynolds number (γ˙¯L2/ν), the Schmidt number (ν/D), a dimensionless parameter Σ=(Aλ2/ρν2), a parameter µr which represents the viscosity contrast between the hydrophilic and hydrophobic components, and (L/λ), the ratio of system size and layer spacing. Here, ρ, ν, and D are the density, kinematic viscosity (ratio of viscosity and density), and the mass diffusivity, and A is the energy density in the free energy functional which is proportional to the compression modulus. Two distinct modes of structural evolution are observed for moderate values of the parameter Σ depending only on the combination ScΣ and independent of system size. For ScΣ less than about 10, the layers tend to form before they are deformed by the mean shear, and layered but misaligned domains are initially formed, and these are deformed and rotated by the flow. In this case, the excess viscosity (difference between the viscosity and that for an aligned state) does not decrease to zero even after 1000 strain units, but appears to plateau to a steady state value. For ScΣ greater than about 10, layers are deformed by the mean shear before they are fully formed, and a well aligned lamellar phase with edge dislocation orders completely due to the cancellation of dislocations. The excess viscosity scales as t-1 in the long time limit. The maximum macroscopic viscosity (ratio of total stress and average strain rate over the entire sample) during the alignment process increases with the system size proportional to (L/λ)3/2. For large values of Σ, there is localisation of shear at the walls, and the bulk of the sample moves as a block. The thickness of the shearing region appears to be invariant with the system size, leading to an increase of viscosity proportional to L. The time for structural evolution is found to be the inverse of the strain rate γ˙-1. In the case of a significant viscosity contrast between the hydrophilic and hydrophobic parts, the average viscosity increases by 1-2 orders of magnitude due to the defect pinning mechanism, where the regions between defects move as a block, and shear localisation at the wall.

19.
J Pharm Bioallied Sci ; 7(Suppl 2): S465-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26538899

ABSTRACT

INTRODUCTION: Digital three-dimensional models are widely used for orthodontic diagnosis. The purpose of this study was to appraise the accuracy of digital models obtained from computer-aided design/computer-aided manufacturing (CAD/CAM) and cone-beam computed tomography (CBCT) for tooth-width measurements and the Bolton analysis. MATERIALS AND METHODS: Digital models (CAD/CAM, CBCT) and plaster model were made for each of 50 subjects. Tooth-width measurements on the digital models (CAD/CAM, CBCT) were compared with those on the corresponding plaster models. The anterior and overall Bolton ratios were calculated for each participant and for each method. The paired t-test was applied to determine the validity. RESULTS: Tooth-width measurements, anterior, and overall Bolton ratio of digital models of CAD/CAM and CBCT did not differ significantly from those on the plaster models. CONCLUSION: Hence, both CBCT and CAD/CAM are trustable and promising technique that can replace plaster models due to its overwhelming advantages.

20.
Int J Surg Oncol ; 2015: 538948, 2015.
Article in English | MEDLINE | ID: mdl-26167298

ABSTRACT

Background. Endocrine Pancreatic Tumours (PENs) are rare and can be nonfunctioning or functioning. They carry a good prognosis overall though high grade lesions show a relatively shorter survival. The aim of the current study is to describe a single centre analysis of the clinical characteristics and surgical treatment of PENs. Patients and Methods. This is a cohort analysis of 40 patients of PENs who underwent surgery at Sir Ganga Ram Hospital, New Delhi, India, from 1995 to 2013. Patient particulars, clinical features, surgical interventions, postoperative outcome, and followup were done and reviewed. The study group was divided based on grade (G1, G2, and G3) and functionality (nonfunctioning versus functioning) for comparison. Results. PENs comprised 6.3% of all pancreatic neoplasms (40 of 634). Twenty-eight patients (70%) had nonfunctioning tumours. Eighteen PENs (45%) were carcinomas (G3), all of which were nonfunctioning. 14 (78%) of these were located in the pancreatic head and uncinate process (P = 0.09). The high grade (G3) lesions were significantly larger in size than the lower grade (G1 + G2) tumours (7.0 ± 3.5 cms versus 3.1 ± 1.6 cms, P = 0.007). Pancreatoduodenectomy was performed in 18 (45%), distal pancreatectomy in 10 (25%), and local resection in 8 (20%) and nonresective procedures were performed in 4 patients (10%). Fourteen patients (35%) had postoperative complications. All G3 grade tumours which were resected had positive lymph nodes (100%) and 10 had angioinvasion (71%). Eight neoplasms (20%) were cystic, all being grade G3 carcinomas, while the rest were solid. The overall disease related mortality attributable to PEN was 14.3% (4 of 28) and for malignant PENs was 33.3% (4 of 12) after a mean follow-up period of 49.6 months (range: 2-137 months). Conclusion. Majority of PENs are nonfunctioning. They are more likely malignant if they are nonfunctioning and large in size, show cystic appearance, and are situated in the pancreatic head. Early surgery leads to good long term survival with acceptable postoperative morbidity.


Subject(s)
Neuroendocrine Tumors/surgery , Pancreatic Neoplasms/surgery , Adult , Aged , Female , Humans , Male , Middle Aged , Pancreatectomy , Pancreaticoduodenectomy , Prospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...