Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Trans Indian Natl Acad Eng ; 7(3): 911-926, 2022.
Article in English | MEDLINE | ID: mdl-35836614

ABSTRACT

Ventilation of shared indoor spaces is crucial for mitigating air-borne infection spread among its occupants. Replacing the air in a room with fresh air is key to minimize the concentration of potentially infectious aerosol generated in the room. Recirculating air flow present at corners and around obstacles can trap air and infectious aerosol. This can significantly delay their evacuation by the ventilation system. Knowing the location and extent of such recirculation zones is, therefore, important. In this work, we present flow visualization experiments to identify recirculation zones in an enclosed space. It is based on the deflection of the smoke streak generated by an incense stick. We use particle image velocimetry (PIV) post-processing to quantify the deflection of the smoke streak and use it as an indicator of the direction of local air flow. Positive deflection, defined as the deflection towards the exit location, is associated with primary flow present in well-ventilated regions of the room. On the other hand, negative deflection indicates reversed flow in recirculation zones, where the smoke streak is defined away from the exit location. The technique is applied to a public shared washroom, where the toilet seat is found to be in a well-ventilated region, while the washbasin is in a large recirculation zone. We compare the experimental point measurements with flow field solution obtained using computational fluid dynamics (CFD). We also explore geometry modifications as a strategy to eliminate the recirculation zone over the washbasin. Supplementary Information: The online version contains supplementary material available at 10.1007/s41403-022-00335-1.

2.
ACS Nano ; 15(12): 19702-19711, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34890180

ABSTRACT

The formation of helical motifs typically requires specific directional interactions. Here, we demonstrate that isotropic interparticle attraction can drive self-assembly of colloidal chains into thermo-reversible helices, for chains with a critical level of backbone rigidity. We prepare thermoresponsive colloidal chains by cross-linking PNIPAM microgel-coated polystyrene colloids ("monomers"), aligned in an AC electric field. We control the chain rigidity by varying cross-linking time. Above the LCST of PNIPAM, there is an effective attraction between monomers so that the colloidal chains are in a bad solvent. On heating, the chains decrease in size. For the most rigid chains, the decrease is modest and is not accompanied by a change in shape. Much less rigid chains form relatively compact structures, resulting in a large increase in the local monomer density. Unusually, chains with intermediate rigidity spontaneously assemble into helical structures. The chain helicity increases with temperature and plateaus above the collapse transition temperature of the microgel particles. We simulate a minimal model that captures the spontaneous emergence of the helical conformations of the polymeric chain and provides insight into this shape transition. Our work suggests that a purely mechanical instability for semiflexible filaments can drive helix formation, without the need to invoke directional interactions.

3.
Soft Matter ; 17(15): 4098-4108, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33729269

ABSTRACT

We investigate directional ice templating of dilute aqueous colloidal particle dispersions and examine the nature of the assemblies that result. We coat micron-size polystyrene colloids with cross-linkable polymer (polyethyleneimine, PEI), add cross-linker, and subject this dispersion to unidirectional freezing. We work at sufficiently low colloid concentrations, such that the particles do not percolate on freezing. When the aqueous dispersion freezes, ice crystals force polymer-coated particles and cross-linker into close proximity. This results in the formation of cross-linked clusters of particles at ice crystal boundaries. We vary the particle volume fraction from φ ∼ 2.5 × 10-3 to φ ∼ 5.0 × 10-2 and observe that there is a transition from isolated single particles to increasingly large sized clusters. Most of the clusters formed under these conditions are either linear, two-particle wide chains, or sheet-like aggregates. The probability (Pn) of clusters containing n particles (n > 2) obeys a power law Pn ∼ n-η, where η strongly depends on the particle concentration in the dispersion, varying from 2.10 (for φ ∼ 5.0 × 10-2) to 3.03 (for φ ∼ 2.5 × 10-3). This change in η is qualitatively different from the case of isotropic freezing, where η is particle concentration-independent and depends only on the ice nucleation density. To understand the differences between isotropic and directional ice templating, we performed lattice simulations of a highly simplified model, where ice crystals grow at a constant rate to force clustering. We ignore hydrodynamic interactions and ice growth instabilities. Despite ignoring these experimental details, the simulations capture the experimental results, nearly quantitatively. As the ice crystals grow and the space available to the colloids "closes up" so that the particles cluster to form aggregates, crystallization protocol-induced differences in the geometry of these "closed up" spaces determine the scaling behaviour of Pn.

5.
Angew Chem Int Ed Engl ; 58(9): 2715-2719, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30707466

ABSTRACT

It is of immense interest to exert spatial and temporal control of chemical reactions. It is now demonstrated that irradiation can trigger reactions specifically at the surface of a simple colloidal construct, obtained by adsorbing polyethyleneimine on fluorescent colloidal particles. Exciting the fluorescent dye in the colloid affords photoinduced electron transfer to spatially proximal amine groups on the adsorbed polymer to form free radical ions. It is demonstrated that these can be harnessed to polymerize acrylic acid monomer at the particle surface, or to break up colloidal assemblies by cleaving a cross-linked polymer mesh. Formation of free radical ions is not a function of the size of the colloid, neither is it restricted to a specific fluorophore. Fluorophores with redox potentials that allow photoinduced electron transfer with amine groups show formation of free radical ions.

6.
Soft Matter ; 15(2): 159-165, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30548048

ABSTRACT

The linear response of alginate-phenyl boronic acid (Alg-PBA) esters shows a universal, composition-independent viscoelastic fluid-like behaviour. Reversible association of alginates governs their rheology at all compositions (viz. at all alginate concentrations and solution pH). However, their high strain behaviour is very sensitive to composition. Tuning composition affords liquids that neck to form filaments capable of being drawn to large elongations without failure. We interpret our data by invoking strain-dependent association and dissociation rates for the alginates. High association rates at high strain result in materials with viscoelastic liquid like behaviour.

7.
Langmuir ; 34(23): 6827-6834, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29775311

ABSTRACT

Compact macromolecular dendrons have previously been shown to induce the formation of discontinuous inverse micellar assemblies with Fd3 m symmetry in monoolein/water systems. Here, we demonstrate that a large PAMAM dendron (G5: fifth generation) induces the formation of a very unusual mesophase with P4332 symmetry. This mesophase had previously been observed in monoolein/water systems only on addition of cytochrome c. The P4332 mesophase can be considered an intermediate phase between the bicontinuous Ia3 d and discontinuous micellar mesophases. We present a detailed investigation of the phase behavior of monoolein/water as a function of G5 concentration and temperature. Addition of 1% G5 in 85/15 monoolein/water system induces a transition from the Lα to Ia3 d phase. Further increase in G5 concentration to above 2% induces the formation of the P4332 phase. In contrast to this, incorporation of lower generation PAMAM dendrons (G2-G4) in monoolein/water yields a qualitatively different phase diagram with the formation of the reverse micellar Fd3 m phase. PAMAM dendrons of all generations, G2-G5, bear terminal amine groups that interact with the monoolein headgroup. The compact molecular architecture of the dendrons and these attractive interactions induce bending of the monoolein bilayer structure. For smaller dendrons, G2-G4, this results in the formation of the Fd3 m phase. However, the large size of the G5 dendron precludes this and a rare intermediate phase between the Ia3 d and discontinuous micellar phase, and the P4332 mesophase forms instead.

8.
Langmuir ; 34(15): 4603-4613, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29554800

ABSTRACT

We use single-particle tracking to investigate colloidal dynamics in hybrid assemblies comprising colloids enmeshed in a crosslinked polymer network. These assemblies are prepared using ice templating and are macroporous monolithic structures. We investigate microstructure-property relations in assemblies that appear chemically identical but show qualitatively different mechanical response. Specifically, we contrast elastic assemblies that can recover from large compressive deformations with plastic assemblies that fail on being compressed. Particle tracking provides insights into the microstructural differences that underlie the different mechanical response of elastic and plastic assemblies. Since colloidal motions in these assemblies are sluggish, particle tracking is especially sensitive to imaging artifacts such as stage drift. We demonstrate that the use of wavelet transforms applied to trajectories of probe particles from fluorescence microscopy eliminates stage drift, allowing a spatial resolution of about 2 nm. In elastic and plastic scaffolds, probe particles are surrounded by other particles-thus, their motion is caged. We present mean square displacement and van Hove distributions for particle motions and demonstrate that plastic assemblies are characterized by significantly larger spatial heterogeneity when compared with the elastic sponges. In elastic assemblies, particle diffusivities are peaked around a mean value, whereas in plastic assemblies, there is a wide distribution of diffusivities with no clear peak. Both elastic and plastic assemblies show a frequency independent solid modulus from particle tracking microrheology. Here too, there is a much wider distribution of modulus values for plastic scaffolds as compared to elastic, in contrast to bulk rheological measurements where both assemblies exhibit a similar response. We interpret our results in terms of the spatial distribution of crosslinks in the polymer mesh in the colloidal assemblies.

9.
Soft Matter ; 14(2): 205-215, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29243764

ABSTRACT

Efficient delivery of aqueous sprays to hydrophobic surfaces is the key technological challenge in a wide variety of applications, including pesticide delivery to plants. To account for losses due to bouncing of pesticide sprays off hydrophobic leaf surfaces, a large excess of pesticide is typically employed, resulting in environmentally hazardous run-offs that contaminate soil and ground water. We demonstrate that aqueous dispersions of glycerol monooleate nanoparticles, called cubosomes, wet hydrophobic and superhydrophobic surfaces and adhere to them. Cubosomes comprise glycerol monooleate lipid molecules self-assembled into a double diamond cubic phase, that form stable aqueous dispersions that are sterically stabilized using amphiphilic block copolymers. We use high speed imaging to monitor the spreading and retraction of aqueous drops impinged on model hydrophobic substrates and on superhydrophobic lotus leaves. We show that cubosomes diffuse to hydrophobic substrates and reorganize to form a thin, ≈2 nm adsorbed lipid layer during the millisecond time scales that characterize drop impact. This adsorbed film drastically reduces the water contact angle, transforming the hydrophobic surface to hydrophilic, thus facilitating retention of the aqueous drop on the surface. Aqueous drops of cubosomes impinged at low velocities on inclined natural superhydrophobic lotus leaf surfaces do not roll off, unlike drops of water or surfactant solutions. When sprayed on inclined lotus leaves, corresponding to the case of high velocity drop impingement, cubosome dispersions form a continuous wetting film. Our results have important implications for efficient, environment-friendly delivery of pesticide sprays.

10.
RSC Adv ; 8(44): 24731-24739, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-35542148

ABSTRACT

Controlling the pore architecture in macroporous scaffolds has important implications for their use as reactor packings and as catalyst supports. We report the preparation of a macroporous structure, where the pore walls are perforated by holes. These materials are prepared by modification of the ice-templating protocol developed in our group. We freeze a dispersion of colloidal silica, polymer and cross-linker in a water/acetonitrile medium and allow crosslinking to proceed in the frozen state. The presence of a small fraction of acetonitrile (varying between 1.6% to 6.4%) results in the formation of holes in the pore walls. Increasing the acetonitrile concentration changes the pore size distribution, and produces smaller pores on average. This also results in an increasing fraction of the wall area being covered by small pores, of the order of a few microns in size. Perforation of the walls by pores does not change the overall porosity or modulus of the scaffolds. However, the introduction of pores leads to a drastic reduction in the pressure drop required to pump liquid through the scaffolds. The observed residence time distribution (RTD) in the scaffolds is represented by two plug flow reactors (PFRs) in parallel. The RTD results indicate that increasing the hole fraction in the pore walls results in increased channelling which explains the aforementioned decreased pressure drop during pressure driven flow.

11.
ACS Appl Mater Interfaces ; 9(51): 44864-44872, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29206442

ABSTRACT

Polymeric foams used in furniture and automotive and aircraft seating applications rely on the incorporation of environmentally hazardous fire-retardant additives to meet fire safety norms. This has occasioned significant interest in novel approaches to the elimination of fire-retardant additives. Foams based on polymer nanocomposites or based on fire-retardant coatings show compromised mechanical performance and require additional processing steps. Here, we demonstrate a one-step preparation of a fire-retardant ice-templated inorganic/polymer hybrid that does not incorporate fire-retardant additives. The hybrid foams exhibit excellent mechanical properties. They are elastic to large compressional strain, despite the high inorganic content. They also exhibit tunable mechanical recovery, including viscoelastic "memory". These hybrid foams are prepared using ice-templating that relies on a green solvent, water, as a porogen. Because these foams are predominantly comprised of inorganic components, they exhibit exceptional fire retardance in torch burn tests and are self-extinguishing. After being subjected to a flame, the foam retains its porous structure and does not drip or collapse. In micro-combustion calorimetry, the hybrid foams show a peak heat release rate that is only 25% that of a commercial fire-retardant polyurethanes. Finally, we demonstrate that we can use ice-templating to prepare hybrid foams with different inorganic colloids, including cheap commercial materials. We also demonstrate that ice-templating is amenable to scale up, without loss of mechanical performance or fire-retardant properties.

12.
ACS Nano ; 11(10): 10025-10031, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28898046

ABSTRACT

Active colloids are not constrained by equilibrium: ballistic propulsion, superdiffusive behavior, or enhanced diffusivities have been reported for active Janus particles. At high concentrations, interactions between active colloids give rise to complex emergent behavior. Their collective dynamics result in the formation of several hundred particle-strong flocks or swarms. Here, we demonstrate significant diffusivity enhancement for colloidal objects that neither have a Janus architecture nor are at high concentrations. We employ uniformly catalyst-coated, viz. chemo-mechanically, isotropic colloids and link them into a chain to enforce proximity. Activity arises from hydrodynamic interactions between enchained colloidal beads due to reaction-induced phoretic flows catalyzed by platinum nanoparticles on the colloid surface. This results in diffusivity enhancements of up to 60% for individual chains in dilute solution. Chains with increasing flexibility exhibit higher diffusivities. Simulations accounting for hydrodynamic interactions between enchained colloids due to active phoretic flows accurately capture the experimental diffusivity. These simulations reveal that the enhancement in diffusivity can be attributed to the interplay between chain conformational fluctuations and activity. Our results show that activity can be used to systematically modulate the mobility of soft slender bodies.

13.
Soft Matter ; 13(34): 5731-5740, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28758659

ABSTRACT

The capillarity-driven uptake of liquid in swellable, highly porous sponges is of significant industrial importance. Sponges prepared using polymers and their composites with carbon nanotubes and graphene have been reported, with extraordinary solvent uptake capacities and with the ability to separate oil from water. However, the effect of systematic variation of sponge characteristics on solvent uptake has not been investigated. Here, we report experiments that study capillary uptake in a variety of flexible, centimetre-sized macroporous cylindrical sponges. We used ice-templating to prepare a series of model macroporous sponges in which the porosity, modulus and composition were systematically varied. We investigated two kinds of sponge: (a) those composed purely of cross-linked polymers and (b) those prepared as composites of inorganic particles and polymers. Both kinds of sponge are flexible and exhibit elastic recovery after large compressive deformation. All sponges were characterized thoroughly with respect to their pore microstructure and elastic modulus. When one end of a sponge is plunged into a large reservoir, water rises through capillary action against gravity. We observed a transition from an inertial capillary regime, where the liquid column height rose linearly with time, t, to a viscous capillary regime, where the liquid height rose with time t0.5. We showed that these results can be rationalized using analyses developed for rigid sponges. We combined differential momentum balance equations for uptake in rigid capillaries with the phenomenological Ergun-Forchheimer relations to account for the effect of the sponge microstructure. This approach works remarkably well in the viscous capillary regime and shows that capillary uptake is governed primarily by the total porosity and pore dimensions of soft sponges.

14.
Langmuir ; 32(44): 11623-11630, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27715061

ABSTRACT

Subtle variations in the preparation of ice-templated nanoparticle assemblies yield monoliths that are chemically identical but exhibit qualitatively different mechanical behavior. We ice template aqueous dispersions to prepare macroporous monoliths largely comprising silica nanoparticles held together by a crosslinked polymer mesh. When the polymer is crosslinked in the presence of ice crystals, we obtain an elastic sponge that is capable of recovery after imposition of large compressive strains (up to 80%). If, however, the ice is lyophilized before the polymer is crosslinked, we obtain a plastic monolith that fails even for modest strains (less than 10%). The elastic sponge and the plastic monolith are chemically identical; they have the same organic content, the same ratio of polymer to crosslinker, and the same average crosslink density. Atomic force microscopy (AFM) was used to probe the local mechanical properties of the crosslinked polymer mesh. These measurements indicate that plastic monoliths dissipate significantly more energy and have a larger spatial variation in local mechanical response relative to the elastic sponges. We believe that this behavior might correlate with a wider spatial distribution of crosslinks in plastic scaffolds relative to elastic scaffolds.

19.
Faraday Discuss ; 186: 61-76, 2016.
Article in English | MEDLINE | ID: mdl-26780838

ABSTRACT

We investigate ice templating of aqueous dispersions of polymer coated colloids and crosslinkers, at particle concentrations far below that required to form percolated monoliths. Freezing the aqueous dispersions forces the particles into close proximity to form clusters, that are held together as the polymer chains coating the particles are crosslinked. We observe that, with an increase in the particle concentration from about 10(6) to 10(8) particles per ml, there is a transition from isolated single particles to increasingly larger clusters. In this concentration range, most of the colloidal clusters formed are linear or sheet like particle aggregates. Remarkably, the cluster size distribution for clusters smaller than about 30 particles, as well as the size distribution of linear clusters, is only weakly dependent on the dispersion concentration in the range that we investigate. We demonstrate that the main features of cluster formation are captured by kinetic simulations that do not consider hydrodynamics or instabilities at the growing ice front due to particle concentration gradients. Thus, clustering of colloidal particles by ice templating dilute dispersions appears to be governed only by particle exclusion by the growing ice crystals that leads to their accumulation at ice crystal boundaries.

20.
Soft Matter ; 11(28): 5705-11, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26081120

ABSTRACT

Addition of a branched polymer, polyethyleneimine, significantly alters the organization of a glycerol monooleate (GMO) lipid-water system. We present detailed data over a wide range of compositions (water content from 10 to 40%, relative to GMO and PEI fractions from 0 to 4%) and temperatures (25-80 °C). The PEI molecular weight effects are examined using polymers over a range from 0.8 to 25 kDa. Addition of PEI induces the formation of higher curvature reverse phases. In particular, PEI induces the formation of the Fd3m phase: a discontinuous phase comprising reverse micelles of two different sizes stacked in a cubic AB2 crystal. The formation of the Fd3m phase at room temperature, upon addition of polar, water soluble PEI is unusual, since such phases typically are formed only upon addition of apolar oils. The largest stability window for the Fd3m phase is observed for PEI with a molecular weight = 2 kDa. We discuss how PEI influences the formation and stability of high curvature phases.


Subject(s)
Glycerides/chemistry , Lipids/chemistry , Polyethyleneimine/chemistry , Polymers/chemistry , Micelles , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...