Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 616(7956): 270-274, 2023 04.
Article in English | MEDLINE | ID: mdl-37045919

ABSTRACT

The most recognizable feature of graphene's electronic spectrum is its Dirac point, around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behaviour in this regime is often obscured by charge inhomogeneity1,2 but thermal excitations can overcome the disorder at elevated temperatures and create an electron-hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties, including quantum-critical scattering3-5 and hydrodynamic flow6-8. However, little is known about the plasma's behaviour in magnetic fields. Here we report magnetotransport in this quantum-critical regime. In low fields, the plasma exhibits giant parabolic magnetoresistivity reaching more than 100 per cent in a magnetic field of 0.1 tesla at room temperature. This is orders-of-magnitude higher than magnetoresistivity found in any other system at such temperatures. We show that this behaviour is unique to monolayer graphene, being underpinned by its massless spectrum and ultrahigh mobility, despite frequent (Planckian limit) scattering3-5,9-14. With the onset of Landau quantization in a magnetic field of a few tesla, where the electron-hole plasma resides entirely on the zeroth Landau level, giant linear magnetoresistivity emerges. It is nearly independent of temperature and can be suppressed by proximity screening15, indicating a many-body origin. Clear parallels with magnetotransport in strange metals12-14 and so-called quantum linear magnetoresistance predicted for Weyl metals16 offer an interesting opportunity to further explore relevant physics using this well defined quantum-critical two-dimensional system.

2.
Nano Lett ; 22(15): 6268-6275, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35857927

ABSTRACT

Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 °C in an inert atmosphere. Its superconducting transition (Tc) is found at 2.6 K, exceeding the Tc of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.

3.
Nat Commun ; 11(1): 5756, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33188210

ABSTRACT

In quantizing magnetic fields, graphene superlattices exhibit a complex fractal spectrum often referred to as the Hofstadter butterfly. It can be viewed as a collection of Landau levels that arise from quantization of Brown-Zak minibands recurring at rational (p/q) fractions of the magnetic flux quantum per superlattice unit cell. Here we show that, in graphene-on-boron-nitride superlattices, Brown-Zak fermions can exhibit mobilities above 106 cm2 V-1 s-1 and the mean free path exceeding several micrometers. The exceptional quality of our devices allows us to show that Brown-Zak minibands are 4q times degenerate and all the degeneracies (spin, valley and mini-valley) can be lifted by exchange interactions below 1 K. We also found negative bend resistance at 1/q fractions for electrical probes placed as far as several micrometers apart. The latter observation highlights the fact that Brown-Zak fermions are Bloch quasiparticles propagating in high fields along straight trajectories, just like electrons in zero field.

4.
ACS Appl Mater Interfaces ; 9(27): 23175-23180, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28631485

ABSTRACT

Recent renewed interest in layered transition metal dichalcogenides stems from the exotic electronic phases predicted and observed in the single- and few-layer limit. Realizing these electronic phases requires preserving the desired transport properties down to a monolayer, which is challenging. Surface oxides are known to impart Fermi level pinning or degrade the mobility on a number of different systems, including transition metal dichalcogenides and black phosphorus. Semimetallic WTe2 exhibits large magnetoresistance due to electron-hole compensation; thus, Fermi level pinning in thin WTe2 flakes could break the electron-hole balance and suppress the large magnetoresistance. We show that WTe2 develops an ∼2 nm thick amorphous surface oxide, which shifts the Fermi level by ∼300 meV at the WTe2 surface. We also observe a dramatic suppression of the magnetoresistance for thin flakes. However, due to the semimetallic nature of WTe2, the effects of Fermi level pinning are well screened and are not the dominant cause for the suppression of magnetoresistance, supported by fitting a two-band model to the transport data, which showed the electron and hole carrier densities are balanced down to ∼13 nm. However, the fitting shows a significant decrease of the mobilities of both electrons and holes. We attribute this to the disorder introduced by the amorphous surface oxide layer. Thus, the decrease of mobility is the dominant factor in the suppression of magnetoresistance for thin WTe2 flakes. Our study highlights the critical need to investigate often unanticipated and sometimes unavoidable extrinsic surface effects on the transport properties of layered dichalcogenides and other 2D materials.

5.
Proc Natl Acad Sci U S A ; 114(14): 3578-3583, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28320950

ABSTRACT

Lithium-sulfur batteries (Li-S batteries) have attracted intense interest because of their high specific capacity and low cost, although they are still hindered by severe capacity loss upon cycling caused by the soluble lithium polysulfide intermediates. Although many structure innovations at the material and device levels have been explored for the ultimate goal of realizing long cycle life of Li-S batteries, it remains a major challenge to achieve stable cycling while avoiding energy and power density compromises caused by the introduction of significant dead weight/volume and increased electrochemical resistance. Here we introduce an ultrathin composite film consisting of naphthalimide-functionalized poly(amidoamine) dendrimers and graphene oxide nanosheets as a cycling stabilizer. Combining the dendrimer structure that can confine polysulfide intermediates chemically and physically together with the graphene oxide that renders the film robust and thin (<1% of the thickness of the active sulfur layer), the composite film is designed to enable stable cycling of sulfur cathodes without compromising the energy and power densities. Our sulfur electrodes coated with the composite film exhibit very good cycling stability, together with high sulfur content, large areal capacity, and improved power rate.

6.
Sci Rep ; 6: 24274, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27080733

ABSTRACT

In Dirac materials, the low energy excitations behave like ultra-relativistic massless particles with linear energy dispersion. A particularly intriguing phenomenon arises with the intrinsic charge transport behavior at the Dirac point where the charge density approaches zero. In graphene, a 2-D Dirac fermion gas system, it was predicted that charge transport near the Dirac point is carried by evanescent modes, resulting in unconventional "pseudo-diffusive" charge transport even in the absence of disorder. In the past decade, experimental observation of this phenomenon remained challenging due to the presence of strong disorder in graphene devices which limits the accessibility of the low carrier density regime close enough to the Dirac point. Here we report transport measurements on ballistic suspended graphene-Niobium Josephson weak links that demonstrate a transition from ballistic to pseudo-diffusive like evanescent transport below a carrier density of ~10(10) cm(-2). Approaching the Dirac point, the sub-harmonic gap structures due to multiple Andreev reflections display a strong Fermi energy-dependence and become increasingly pronounced, while the normalized excess current through the superconductor-graphene interface decreases sharply. Our observations are in qualitative agreement with the long standing theoretical prediction for the emergence of evanescent transport mediated pseudo-diffusive transport in graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...