Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 18(7): 569-74, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8892241

ABSTRACT

This study was conducted to develop a detailed, three-dimensional, anatomically accurate finite element model of the human cervical spine structure using close-up computed tomography scans and to validate against experimental data. The finite element model of the three vertebra segment C4-C6 unit consisted of 9178 solid elements and 1193 thin shell elements. The force-displacement response under axial compression correlated well with experimental data. Because of the inclusion of three levels in the spinal structure, it was possible to determine the internal mechanics of the various components at each level. The applicability of the model was illustrated by adopting appropriate material properties from literature. Results indicated that, the stresses in the anterior column were higher compared to the posterior column at the inferior level, while the opposite was found to be true at the superior level. The superior and inferior endplate stresses were higher in the middle vertebral body compared to the adjacent vertebrae. In addition, the stresses in the cancellous core of the middle, unconstrained vertebral body were higher. The present three-dimensional finite element model offers an additional facet to a better understanding of the biomechanics of the human cervical spine.


Subject(s)
Cervical Vertebrae/anatomy & histology , Models, Anatomic , Adult , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/physiology , Computer Simulation , Female , Humans , In Vitro Techniques , Reference Values , Stress, Mechanical , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...