Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 285: 127764, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805978

ABSTRACT

The future of agriculture is questionable under the current climate change scenario. Climate change and climate-related calamities directly influence biotic and abiotic factors that control agroecosystems, endangering the safety of the world's food supply. The intricate interactions between soil microorganisms, including plants, bacteria, and fungi, play a pivotal role in promoting sustainable agriculture and ecosystem restoration. Soil microbes play a major part in nutrient cycling, including soil organic carbon (SOC), and play a pivotal function in the emission and depletion of greenhouse gases, including CH4, CO2, and N2O, which can impact the climate. At this juncture, developing a triumphant metagenomics approach has greatly increased our knowledge of the makeup, functionality, and dynamics of the soil microbiome. Currently, the involvement of plants in climate change indicates that they can interact with the microbial communities in their environment to relieve various stresses through the innate microbiome assortment of focused strains, a phenomenon dubbed "Cry for Help." The metagenomics method has lately appeared as a new platform to adjust and encourage beneficial communications between plants and microbes and improve plant fitness. The metagenomics of soil microbes can provide a powerful tool for designing and evaluating ecosystem restoration strategies that promote sustainable agriculture under a changing climate. By identifying the specific functions and activities of soil microbes, we can develop restoration programs that support these critical components of healthy ecosystems while providing economic benefits through ecosystem services. In the current review, we highlight the innate functions of microbiomes to maintain the sustainability of agriculture and ecosystem restoration. Through this insight study of soil microbe metagenomics, we pave the way for innovative strategies to address the pressing challenges of food security and environmental conservation. The present article elucidates the mechanisms through which plants and microbes communicate to enhance plant resilience and ecosystem restoration and to leverage metagenomics to identify and promote beneficial plant-microbe interactions. Key findings reveal that soil microbes are pivotal in nutrient cycling, greenhouse gas modulation, and overall ecosystem health, offering novel insights into designing ecosystem restoration strategies that bolster sustainable agriculture. As this is a topic many are grappling with, hope these musings will provide people alike with some food for thought.


Subject(s)
Agriculture , Bacteria , Climate Change , Ecosystem , Fungi , Metagenomics , Plants , Soil Microbiology , Fungi/genetics , Fungi/classification , Fungi/metabolism , Agriculture/methods , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Plants/microbiology , Microbiota/genetics , Soil/chemistry
2.
Front Plant Sci ; 15: 1376214, 2024.
Article in English | MEDLINE | ID: mdl-38742215

ABSTRACT

Sustainable food security and safety are major concerns on a global scale, especially in developed nations. Adverse agroclimatic conditions affect the largest agricultural-producing areas, which reduces the production of crops. Achieving sustainable food safety is challenging because of several factors, such as soil flooding/waterlogging, ultraviolet (UV) rays, acidic/sodic soil, hazardous ions, low and high temperatures, and nutritional imbalances. Plant growth-promoting rhizobacteria (PGPR) are widely employed in in-vitro conditions because they are widely recognized as a more environmentally and sustainably friendly approach to increasing crop yield in contaminated and fertile soil. Conversely, the use of nanoparticles (NPs) as an amendment in the soil has recently been proposed as an economical way to enhance the texture of the soil and improving agricultural yields. Nowadays, various research experiments have combined or individually applied with the PGPR and NPs for balancing soil elements and crop yield in response to control and adverse situations, with the expectation that both additives might perform well together. According to several research findings, interactive applications significantly increase sustainable crop yields more than PGPR or NPs alone. The present review summarized the functional and mechanistic basis of the interactive role of PGPR and NPs. However, this article focused on the potential of the research direction to realize the possible interaction of PGPR and NPs at a large scale in the upcoming years.

3.
Environ Monit Assess ; 195(12): 1436, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37940796

ABSTRACT

Soil microbes are microscopic organisms that inhabit the soil and play a significant role in various ecological processes. They are essential for nutrient cycling, carbon sequestration, and maintaining soil health. Importantly, soil microbes have the potential to sequester carbon dioxide (CO2) from the atmosphere through processes like carbon fixation and storage in organic matter. Unlocking the potential of microbial-driven carbon storage holds the key to revolutionizing climate-smart agricultural practices, paving the way for sustainable productivity and environmental conservation. A fascinating tale of nature's unsung heroes is revealed by delving into the realm of soil microbes. The guardians of the Earth are these tiny creatures that live beneath our feet and discreetly work their magic to fend off the effects of climate change. These microbes are also essential for plant growth enhancement through their roles in nutrient uptake, nitrogen fixation, and synthesis of growth-promoting chemicals. By understanding and managing soil microbial communities, it is possible to improve soil health, soil water-holding capacity, and promote plant growth in agricultural and natural ecosystems. Added to it, these microbes play an important role in biodegradation, bioremediation of heavy metals, and phytoremediation, which in turn helps in treating the contaminated soils. Unfortunately, climate change events affect the diversity, composition, and metabolism of these microbes. Unlocking the microbial potential demands an interdisciplinary endeavor spanning microbiology, ecology, agronomy, and climate science. It is a call to arms for the scientific community to recognize soil microbes as invaluable partners in the fight against climate change. By implementing data-driven land management strategies and pioneering interventions, we possess the means to harness their capabilities, paving the way for climate mitigation, sustainable agriculture, and promote ecosystem resilience in the imminent future.


Subject(s)
Ecosystem , Soil , Soil/chemistry , Climate Change , Soil Microbiology , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...