Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 204: 108060, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37897892

ABSTRACT

Despite complex phytoconstituents, the commercial potential of medicinal plants under ultraviolet (UV) stress environment hasn't been fully comprehended. Due to sessile nature, these plants are constantly exposed to damaging radiation, which disturbs their natural physiological and biochemical processes. To combat with UV stress, plants synthesized several small organic molecules (natural products of low molecular mass like alkaloids, terpenoids, flavonoids and phenolics, etc.) known as plant secondary metabolites (PSMs) that come into play to counteract the adverse effect of stress. Plants adapted a stress response by organizing the expression of several genes, enzymes, transcription factors, and proteins involved in the synthesis of chemical substances and by making the signaling cascade (a series of chemical reactions induced by a stimulus within a biological cell) flexible to boost the defensive response. To neutralize UV exposure, secondary metabolites and their signaling network regulate cellular processes at the molecular level. Conventional breeding methods are time-consuming and difficult to reveal the molecular pattern of the stress tolerance medicinal plants. Acquiring in-depth knowledge of the molecular drivers behind the defensive mechanism of medicinal plants against UV radiation would yield advantages (economical and biological) that will bring prosperity to the burgeoning world's population. Thus, this review article emphasized the comprehensive information and clues to identify several potential genes, transcription factors (TFs), proteins, biosynthetic pathways, and biological networks which are involved in resilience mechanism under UV stress in medicinal plants of high-altitudes.


Subject(s)
Alkaloids , Plants, Medicinal , Plants, Medicinal/metabolism , Plant Breeding , Flavonoids/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological
2.
Bioengineering (Basel) ; 9(4)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35447736

ABSTRACT

Food security and crop production are challenged worldwide due to overpopulation, changing environmental conditions, crop establishment failure, and various kinds of post-harvest losses. The demand for high-quality foods with improved nutritional quality is also growing day by day. Therefore, production of high-quality produce and reducing post-harvest losses of produce, particularly of perishable fruits and vegetables, are vital. For many decades, attempts have been made to improve the post-harvest quality traits of horticultural crops. Recently, modern genetic tools such as genome editing emerged as a new approach to manage and overcome post-harvest effectively and efficiently. The different genome editing tools including ZFNs, TALENs, and CRISPR/Cas9 system effectively introduce mutations (In Dels) in many horticultural crops to address and resolve the issues associated with post-harvest storage quality. Henceforth, we provide a broad review of genome editing applications in horticulture crops to improve post-harvest stability traits such as shelf life, texture, and resistance to pathogens without compromising nutritional value. Moreover, major roadblocks, challenges, and their possible solutions for employing genome editing tools are also discussed.

3.
Front Plant Sci ; 11: 894, 2020.
Article in English | MEDLINE | ID: mdl-32765539

ABSTRACT

Rice (Oryza sativa L.) is one of the major staple food crops of the world. The productivity of rice is considerably affected by the root-knot nematode, Meloidogyne graminicola. Modern nematode management strategies targeting the physiological processes have established the potency of use of neuromotor genes for their management. Here, we explored the utility of two FMRFamide like peptide coding genes, Mg-flp-1 and Mg-flp-12 of M. graminicola for its management through host-induced gene silencing (HIGS) using Agrobacterium-mediated transformation of rice. The presence and integration of hairpin RNA (hpRNA) constructs in transgenic lines were confirmed by PCR, qRT-PCR, and Southern and Northern hybridization. Transgenic plants were evaluated against M. graminicola, where phenotypic effect of HIGS was pronounced with reduction in galling by 20-48% in the transgenic plants. This also led to significant decrease in total number of endoparasites by 31-50% for Mg-flp-1 and 34-51% for Mg-flp-12 transgenics. Likewise, number of egg masses per plant and eggs per egg mass also declined significantly in the transgenics, ultimately affecting the multiplication factor, when compared to the wild type plants. This study establishes the effectiveness of the two M. graminicola flp genes for its management and also for gene pyramiding.

4.
Gene ; 619: 50-60, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28366833

ABSTRACT

The rice root-knot nematode, Meloidogyne graminicola, seriously impairs the growth and yield of rice which is an important staple food worldwide. The disruption of neuropeptide signalling leading to attenuation in nematode behaviour and thereby perturbed infection, offers an attractive alternative to control nematodes. In this direction, the present study was aimed at mining of putative FMRFamide-like peptides (FLPs) from the transcriptomic dataset of M. graminicola followed by characterization of those FLPs via sequencing of PCR products, qRT-PCR and Southern hybridization analysis. We have characterized nine flp genes (flp-1, flp-3, flp-6, flp-7, flp-11, flp-12, flp-14, flp-16 and flp-18) and a partial neuropeptide receptor gene (flp-18 GPCR) from M. graminicola in the present study. In addition, in situ localization revealed the expression of flp-1 and flp-7 in neurons posterior to the circumpharyngeal nerve ring of M. graminicola. In vitro silencing of nine flp genes and flp-18 GPCR in M. graminicola J2 and their subsequent infection in rice and wheat roots demonstrated the reduced penetration ability of FLP silenced worms which underscores the potential of the FLPergic system as a broad-spectrum target to manage the root-knot nematode problem in rice-wheat cropping system.


Subject(s)
FMRFamide/genetics , Helminth Proteins/genetics , Tylenchoidea/genetics , Animals , FMRFamide/metabolism , Gene Silencing , Helminth Proteins/metabolism , Oryza/parasitology , Tylenchoidea/pathogenicity , Virulence/genetics
5.
Int J Syst Evol Microbiol ; 67(5): 1212-1218, 2017 May.
Article in English | MEDLINE | ID: mdl-28086066

ABSTRACT

A Gram-stain-positive, non-motile, non-spore-forming, small spherical bacterium, strain S31T, was isolated from skin surface (external ear lobe) of a healthy human subject and characterized using a polyphasic approach. On the basis of 1507 bp 16S rRNA gene sequence comparison, S31T showed highest (92.8 %, AY119686) sequence similarity with Macrococcus brunensis CCUG 47200T followed by Macrococcus caseolyticus DSM 20597T (92.7 % AP009484) and formed a separate clade with 65 % bootstrap support. The DNA G+C content was found to be 34 mol%. Anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0 are the predominant fatty acids in fatty acid methyl ester (FAME) profile of strain S31T. It contained A3α type peptidoglycan with l-Lys-Gly3-l-Ala peptide. Comparative study of morphological and physiological traits indicated that S31T has phenetically diverged from its closest relatives. On the basis of morphological, chemotaxonomic and genotypic data, S31T showed marked distinctions from its closest relatives of the family Staphylococcaceae and is proposed to represent a novel genus Auricoccus with Auricoccus indicus as type species of the genus. S31T (CCUG 69858T=KCTC 33611T=MCC 3027T) is the type strain of the species.


Subject(s)
Ear/microbiology , Gram-Positive Asporogenous Rods/classification , Phylogeny , Skin/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gram-Positive Asporogenous Rods/genetics , Gram-Positive Asporogenous Rods/isolation & purification , Humans , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
6.
Sci Rep ; 6: 22846, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26961568

ABSTRACT

Rice is one of the major staple food crops in the world and an excellent model system for studying monocotyledonous plants. Diseases caused by nematodes in rice are well documented and among them, root-knot nematode (RKN), Meloidogyne graminicola, causes extensive yield decline. It is therefore necessary to identify novel sources of natural resistance to RKN in rice and to investigate the rice-RKN interaction in detail to understand the basal plant defence mechanisms and nematode manipulation of the host physiology. To this end, six different cultivars of rice were initially screened for RKN infection and development; Pusa 1121 and Vandana were found to be most susceptible and resistant to RKN infection, respectively. In order to investigate the role of major hormone-regulated plant defence pathways in compatible/incompatible rice-RKN interaction, some well-identified marker genes involved in salicylate/jasmonate/ethylene pathway were evaluated for their differential expression through qRT-PCR. In general, our study shows a remarkable discrepancy in the expression pattern of those genes between compatible and incompatible rice-RKN interaction. As most information on the molecular interplay between plants and nematodes were generated on dicotyledonous plants, the current study will strengthen our basic understanding of plant-nematode interaction in the monocot crops, which will aid in defining future strategies for best plant health measures.


Subject(s)
Oryza/parasitology , Tylenchoidea , Animals , Gene Expression Regulation, Plant , Oryza/genetics , Plant Diseases/parasitology , Plant Growth Regulators/metabolism , Plant Roots/parasitology
7.
Genome Announc ; 1(4)2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23929469

ABSTRACT

Staphylococcus massiliensis strain S46 was isolated from the surface of healthy human skin. Here, we report the draft genome sequence of S. massiliensis S46 (2,447,110 bp, with a G+C content of 36.3%).

8.
J Bacteriol ; 194(22): 6307, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23105054

ABSTRACT

The genus Nitratireductor represents nitrate-reducing bacteria from the family Phyllobacteriaceae. Here we report the draft genome sequence of Nitratireductor aquibiodomus strain RA22, which contains 4,592,790 bp, with a G+C content of 61.30%, and has 4,241 protein coding genes.


Subject(s)
Genome, Bacterial , Phyllobacteriaceae/genetics , Molecular Sequence Data , Phyllobacteriaceae/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...