Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0291767, 2023.
Article in English | MEDLINE | ID: mdl-37939067

ABSTRACT

Defining perceptual similarity metrics for odorant comparisons is crucial to understanding the mechanism of olfactory perception. Current methods in olfaction rely on molecular physicochemical features or discrete verbal descriptors (floral, burnt, etc.) to approximate perceptual (dis)similarity between odorants. However, structural or verbal descriptors alone are limited in modeling complex nuances of odor perception. While structural features inadequately characterize odor perception, language-based discrete descriptors lack the granularity needed to model a continuous perception space. We introduce data-driven approaches to perceptual metrics learning (PMeL) based on two key insights: a) by combining physicochemical features with the user's perceptual feedback, we can leverage both structural and perceptual attributes of odors to define dissimilarity, and b) instead of discrete labels, user's perceptual feedback can be gathered as relative similarity comparisons, such as "Does molecule-A smell more like molecule-B, or molecule-C?" These triplet comparisons are easier even for non-experts users and offer a more effective representation of the continuous perception space. Experimental results on several defined tasks show the effectiveness of our approach in evaluating perceptual dissimilarity between odorants. Finally, we investigate how closely our model, trained on non-expert feedback, aligns with the expert's similarity judgments. Our effort aims to reduce reliance on expert annotations.


Subject(s)
Odorants , Olfactory Perception , Feedback , Smell , Machine Learning
2.
PLoS One ; 18(8): e0289881, 2023.
Article in English | MEDLINE | ID: mdl-37566580

ABSTRACT

Recent research has attempted to predict our perception of odorants using Machine Learning models. The featurization of the olfactory stimuli usually represents the odorants using molecular structure parameters, molecular fingerprints, mass spectra, or e-nose signals. However, the impact of the choice of featurization on predictive performance remains poorly reported in direct comparative studies. This paper experiments with different sensory features for several olfactory perception tasks. We investigate the multilabel classification of aroma molecules in odor descriptors. We investigate single-label classification not only in fine-grained odor descriptors ('orange', 'waxy', etc.), but also in odor descriptor groups. We created a database of odor vectors for 114 aroma molecules to conduct our experiments using a QCM (Quartz Crystal Microbalance) type smell sensor module (Aroma Coder®V2 Set). We compare these smell features with different baseline features to evaluate the cluster composition, considering the frequencies of the top odor descriptors carried by the aroma molecules. Experimental results suggest a statistically significant better performance of the QCM type smell sensor module compared with other baseline features with F1 evaluation metric.


Subject(s)
Olfactory Perception , Smell , Odorants , Electronic Nose , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...