Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 13: 74-81, 2022.
Article in English | MEDLINE | ID: mdl-35116214

ABSTRACT

We present a microscopic magnetic domain imaging study of single-shot all-optical magnetic toggle switching of a ferrimagnetic Gd26Fe74 film with out-of-plane easy axis of magnetization by X-ray magnetic circular dichroism photoelectron emission microscopy. Individual linearly polarized laser pulses of 800 nm wavelength and 100 fs duration above a certain threshold fluence reverse the sample magnetization, independent of the magnetization direction, the so-called toggle switching. Local deviations from this deterministic behavior close to magnetic domain walls are studied in detail. Reasons for nondeterministic toggle switching are related to extrinsic effects, caused by pulse-to-pulse variations of the exciting laser system, and to intrinsic effects related to the magnetic domain structure of the sample. The latter are, on the one hand, caused by magnetic domain wall elasticity, which leads to a reduction of the domain-wall length at features with sharp tips. These features appear after the optical switching at positions where the line of constant threshold fluence in the Gaussian footprint of the laser pulse comes close to an already existing domain wall. On the other hand, we identify the presence of laser-induced domain-wall motion in the toggle-switching event as a further cause for local deviations from purely deterministic toggle switching.

2.
J Phys Condens Matter ; 32(11): 114003, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-31778990

ABSTRACT

X-ray absorption spectroscopy investigations of the spin-state switching of spin-crossover (SCO) complexes adsorbed on a highly-oriented pyrolytic graphite (HOPG) surface have shown so far that HOPG is a promising candidate to realize applications such as spintronic devices because of the stability of SCO complexes on HOPG and the possibility of highly efficient thermal and light-induced spin-state switching. Herein, we present the spin switching of several Fe(II) SCO complexes adsorbed on an HOPG surface with particular emphasis on the thermally induced spin transition behaviour with respect to different structural modifications. The complexes of the type [Fe(bpz)2(L)] (bpz = dihydrobis(pyrazolyl)borate, L = 1,10-phenanthroline, 2,2'-bipyridine) and their methylated derivatives exhibit SCO in the solid state with some differences regarding cooperative effects. However, in the vacuum-deposited thick films on quartz, complete and more gradual spin transition behavior is observable via UV/vis spectroscopy. In contrast to that, all complexes show large differences upon direct contact with HOPG. Whereas the unmodified complexes show thermal and light-induced SCO, the addition of e.g. two or four methyl groups leads to a partial or a complete loss of the SCO on the surface. The angle-dependent measurement of the N K-edge compared to calculations indicates that the complete SCO and HS-locked molecules on the surface exhibit a similar preferential orientation, whereas complexes undergoing an incomplete SCO exhibit a random orientation on the surface. These results are discussed in the light of molecule-substrate interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...