Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 140(4): 1251-1254, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29319317

ABSTRACT

A key material for artificial photosynthesis including water splitting is heteronanostructured (HNS) photocatalysts. The photocatalytic activity depends on the geometry and dimension, and the quality of junctions between the components. Here we present a half-cut Au(core)-CdS(shell) (HC-Au@CdS) nanoegg as a new HNS plasmonic photocatalyst for water splitting. UV-light irradiation of Au nanoparticle (NP)-loaded ZnO (Au/ZnO) at 50 °C induces the selective deposition of hexagonal CdS on the Au surface of Au/ZnO with an epitaxial (EPI) relation of CdS{0001}/Au{111}. The subsequent selective dissolution of the ZnO support at room temperature yields HC-Au@CdS with the Au NP size and EPI junction (#) retained. Red-light irradiation (λex = 640 nm) of HC-Au@#CdS gives rise to continuous stoichiometric water splitting with an unprecedentedly high external quantum yield of 0.24%.

2.
J Phys Chem Lett ; 8(1): 86-90, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27957862

ABSTRACT

In the gold nanoparticle (Au NP)-loaded CdS film on fluorine-doped tin oxide electrode (Au/CdS/FTO), the localized plasmonic resonance excitation-induced electron injection from Au NP to CdS has been proven by photoelectrochemical measurements. Formation of ZnS thin films between the Au NP and CdS film leads to a drastic increase of the photocurrent under visible-light irradiation (λ > 610 nm) in a 0.1 M NaClO4 aqueous electrolyte solution due to the electron filtering effect. The photocurrent strongly depends on the thickness of the ZnS film, and the maximum value is obtained at a thickness as thin as 2.1 nm. Furthermore, the ZnS overlayer significantly stabilizes the photocurrent of the CdS/FTO electrode in a polysulfide/sulfide electrolyte solution even under the excitation of CdS (λ > 430 nm). This work presents important information about the design for new plasmonic photocatalysts consisting of plasmonic metal NPs and chalcogenide semiconductors with high conduction band edge.

3.
Phys Chem Chem Phys ; 17(27): 18004-10, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26094620

ABSTRACT

The principal purpose of this study is to present a new design for preparing highly active immobilized gold nanoparticle-based plasmonic photocatalysts. Gold nanoparticles were loaded on rutile TiO2 particles with a mean size of 80 nm (Au/TiO2) by the deposition precipitation method. The surface of SnO2 particles with a mean size of 100 nm was modified by copper(ii) oxide clusters (CuO/SnO2) with the loading amount (Γ/Cu ions nm(-2)) precisely controlled by the chemisorption-calcination cycle technique. Two mesoporous overlayers of Au/TiO2 and CuO/SnO2 were coated side by side on glass substrates with a fluorine-doped tin oxide film (FTO) using the doctor blade method (Au/mp-TiO2|FTO|CuO/mp-SnO2). As test reactions for assessing the visible-light activity, we carried out gas-phase decomposition of acetaldehyde and liquid-phase oxidation of alcohol. In each reaction, this bi-overlayer type catalyst shows a high level of visible-light activity much exceeding those of Au/TiO2 particles and a Au/mp-TiO2|FTO mono-overlayer type catalyst [J. Phys. Chem. C, 2014, 118, 26887]. To confirm the origin of the striking visible-light activity, we studied the electrocatalytic activity of CuO/mp-SnO2|FTO electrodes for the oxygen reduction reaction (ORR). Both the visible-light activity of Au/mp-TiO2|FTO|CuO/mp-SnO2 and the electrocatalytic activity of CuO/mp-SnO2|FTO for ORR strongly depend on the Γ value. A good positive correlation has been found between the visible-light activities and the electrocatalytic activity for ORR. The striking activity of the present bi-overlayer type catalyst can be attributed to the efficient and long-range charge separation by the vectorial electron transport (Au(oxidation sites) → TiO2→ FTO, SnO2→ CuO(reduction sites)) and the excellent electrocatalytic activity of the CuO clusters.

4.
Angew Chem Int Ed Engl ; 53(28): 7305-9, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24863051

ABSTRACT

A key to realizing the sustainable society is to develop highly active photocatalysts for selective organic synthesis effectively using sunlight as the energy source. Recently, metal-oxide-supported gold nanoparticles (NPs) have emerged as a new type of visible-light photocatalysts driven by the excitation of localized surface plasmon resonance of Au NPs. Here we show that visible-light irradiation (λ>430 nm) of TiO2 -supported Au NPs with a bimodal size distribution (BM-Au/TiO2 ) gives rise to the long-range (>40 nm) electron transport from about 14 small (ca. 2 nm) Au NPs to one large (ca. 9 nm) Au NP through the conduction band of TiO2 . As a result of the enhancement of charge separation, BM-Au/TiO2 exhibits a high level of visible-light activity for the one-step synthesis of azobenzenes from nitrobenzenes at 25 °C with a yield greater than 95 % and a selectivity greater than 99 %, whereas unimodal Au/TiO2 (UM-Au/TiO2 ) is photocatalytically inactive.

SELECTION OF CITATIONS
SEARCH DETAIL
...