Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vet Diagn Invest ; 27(3): 332-43, 2015 May.
Article in English | MEDLINE | ID: mdl-26038481

ABSTRACT

Diagnostic analyses often employ single antibody systems but are potentially limited by epitope sequence variation. United States regulatory testing for scrapie primarily uses antibody F99/97.6.1 for immunohistochemistry (IHC) of the prion protein associated with scrapie (PrP(Sc)). Whereas the epitope bound by F99/97.6.1 is highly conserved in sheep, a polymorphism in caprine PRNP results in a glutamine to lysine change at codon 222 and affects PrP detection. This study evaluated the performance of immunoassays (Western blot and IHC) in the presence of PRNP polymorphisms observed in U.S. goat populations. Effects of naturally occurring caprine prion protein alterations at codons 142, 143, 146, 154, or 222 were first evaluated using bacterially expressed recombinant normal cellular prion protein (rec-PrP(C)) and commercially available antibodies (F99/97.6.1, F89/160.1.5, L42, and SAF84). Detection of rec-PrP(C) using F89/160.1.5 was reduced by alterations at 142 and 143; this was also observed in brain PrP(C) from goats expressing these PRNP variants. Effect of allelic variation at 222 was confirmed by Western blot with F99/97.6.1. No differences were observed with L42 or SAF84. IHC of brain demonstrated reduced signal with F89/160.1.5 in animals heterozygous at 143. Decreasing F89/160.1.5 titers were used to demonstrate the impact of PrP(Sc) immunolabeling in preclinical goats and as a surrogate for F99/97.6.1 detection in 222 variants. In the absence of epitope-relevant knowledge of individual goat PRNP, a multi-antibody approach or an antibody that binds an invariant site may provide a more robust immunoassay of PrP(Sc) in classical scrapie, thus reducing the likelihood of false-negative results due to allelic variation.


Subject(s)
PrPSc Proteins/genetics , Prions/genetics , Scrapie/diagnosis , Alleles , Animals , Epitopes , Genetic Variation , Goats , Immunohistochemistry/veterinary , Polymorphism, Genetic , PrPSc Proteins/immunology , Predictive Value of Tests , Prions/immunology
2.
PLoS One ; 7(9): e44713, 2012.
Article in English | MEDLINE | ID: mdl-22970295

ABSTRACT

Arthropod-borne apicomplexan pathogens that cause asymptomatic persistent infections present a significant challenge due to their life-long transmission potential. Although anti-microbials have been used to ameliorate acute disease in animals and humans, chemotherapeutic efficacy for apicomplexan pathogen elimination from a persistently infected host and removal of transmission risk is largely unconfirmed. The recent re-emergence of the apicomplexan Theileria equi in U.S. horses prompted testing whether imidocarb dipropionate was able to eliminate T. equi from naturally infected horses and remove transmission risk. Following imidocarb treatment, levels of T. equi declined from a mean of 10(4.9) organisms/ml of blood to undetectable by nested PCR in 24 of 25 naturally infected horses. Further, blood transfer from treated horses that became nested PCR negative failed to transmit to naïve splenectomized horses. Although these results were consistent with elimination of infection in 24 of 25 horses, T. equi-specific antibodies persisted in the majority of imidocarb treated horses. Imidocarb treatment was unsuccessful in one horse which remained infected as measured by nested PCR and retained the ability to infect a naïve recipient via intravenous blood transfer. However, a second round of treatment eliminated T. equi infection. These results support the utility of imidocarb chemotherapy for assistance in the control and eradication of this tick-borne pathogen. Successful imidocarb dipropionate treatment of persistently infected horses provides a tool to aid the global equine industry by removing transmission risk associated with infection and facilitating international movement of equids between endemic and non-endemic regions.


Subject(s)
Horse Diseases/epidemiology , Theileria/isolation & purification , Theileriasis/epidemiology , Animals , Antiprotozoal Agents/therapeutic use , Female , Horse Diseases/drug therapy , Horse Diseases/parasitology , Horse Diseases/transmission , Horses , Imidocarb/analogs & derivatives , Imidocarb/therapeutic use , Polymerase Chain Reaction , Risk Factors , Theileriasis/parasitology , Theileriasis/transmission , United States/epidemiology
3.
Virus Res ; 84(1-2): 17-25, 2002 Mar 20.
Article in English | MEDLINE | ID: mdl-11900835

ABSTRACT

Five major regions of sequence diversity between strains (V1-V5) have been described in the caprine arthritis-encephalitis lentivirus (CAEV) envelope surface unit glycoprotein (SU). To determine which of these variable regions is important in persistent infection in vivo, we evaluated SU sequence diversity in five neutralization variants from two goats and proviral DNA from five additional goats infected with CAEV-63 for up to 7 years. Overall amino acid sequence divergence in the SU encoded by provirus and neutralization variants compared to parental CAEV-63 ranged from 1.1 to 4%. However, most of the amino acid substitutions and all of the deletions and insertions were present in two discrete regions designated HV1 and HV2. The HV2 region was variable in all neutralization variants and provirus sequences from most animals. This region overlapped the V4 domain of CAEV SU and the neutralization domain of the closely related ovine maedi-visna lentivirus. HV1 was located in a region of SU strictly conserved in all small ruminant lentivirus strains except CAEV-63. This region only varied in a subset of neutralization variants and proviruses, all derived from goats with arthritis. In contrast, sequences in the V1,V2,V3, and V5 regions were stable in neutralization variants and proviruses from infected goats, indicating that sequence diversity between strains in these regions is not due to selection of variants in persistently infected animals. Our results define two discrete regions of CAEV SU that undergo rapid sequence variation in persistently infected goats which may have important roles in virus-host interactions.


Subject(s)
Arthritis-Encephalitis Virus, Caprine/genetics , Evolution, Molecular , Gene Products, env/genetics , Glycoproteins/genetics , Goat Diseases/virology , Lentivirus Infections/virology , Membrane Proteins , Proviruses/genetics , Viral Proteins , Virus Latency , Amino Acid Sequence , Animals , Arthritis-Encephalitis Virus, Caprine/physiology , Genetic Variation , Goats , Lentivirus Infections/veterinary , Molecular Sequence Data , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...