Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Article in English | MEDLINE | ID: mdl-38972903

ABSTRACT

INTRODUCTION: The choice between simultaneous and staged bilateral total knee arthroplasty (BTKA) remains controversial. Age-adjusted Charlson Comorbidity Index(CCI) is a promising tool for risk-stratification. We aimed to compare the outcomes between patients who underwent simultaneous and staged BTKA, stratified by age-adjusted CCI scores. MATERIALS AND METHODS: We conducted this retrospective, single-surgeon case series from 2010 to 2020. This study consisted of 1558 simultaneous BTKA and 786 staged BTKA procedures. The outcome domains included 30-day and 90-day readmission and 1-year reoperation events. We performed multivariate regression analysis to compare the risk of readmission and reoperation following simultaneous and staged BTKA. Other factors included age, sex, body mass index, diabetes mellitus, rheumatoid arthritis, smoking, receiving thromboprophylaxis and blood transfusion. RESULTS: The rates of 30-day, 90-day readmission and 1-year reoperation following simultaneous BTKA was 1.99%, 2.70% and 0.71%, respectively. The rates of 30-day, 90-day readmission and 1-year reoperation following staged BTKA was 0.89%, 1.78% and 0.89%, respectively. For patients with age-adjusted CCI ≥ 4 points, simultaneous BTKA was associated with a higher risk of 30-day (aOR:3.369, 95% CI:0.990-11.466) and 90-day readmission (aOR:2.310, 95% CI:0.942-5.668). In patients with age-adjusted CCI ≤ 3 points, the risk of readmission and reoperation was not different between simultaneous or staged BTKA. CONCLUSION: Simultaneous BTKA was associated with an increased risk of short-term readmissions in patients with age-adjusted CCI ≥ 4 points but not in those with age-adjusted CCI ≤ 3 points. Age-adjusted CCI can be an effective index for the choice between simultaneous and staged BTKA procedures.

2.
J Surg Case Rep ; 2024(5): rjae342, 2024 May.
Article in English | MEDLINE | ID: mdl-38812579

ABSTRACT

Giant phyllodes tumors, typically exceeding 10 cm in size, are neoplastic lesions with malignant potential. Surgical excision in small-breasted Asian women presents unique challenges where expected poor aesthetic outcomes may delay timely medical intervention. The periareolar mastopexy technique offers a comprehensive solution, enabling complete tumor removal alongside mastopexy to achieve optimal breast contouring. This approach consistently delivers favorable aesthetic outcomes, enhancing symmetry and contour. Additionally, the periareolar approach minimizes visible scarring, thereby enhancing patient satisfaction with the cosmetic outcome. Herein, we present a case report of Asian women with giant phyllodes tumors exceeding 10 cm, successfully managed using the periareolar mastopexy technique, emphasizing the importance of optimizing aesthetic outcomes in these challenging cases.

3.
Ann Nucl Med ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704786

ABSTRACT

OBJECTIVE: To investigate the prognostic value of 18F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment. METHODS: We retrospectively analyzed the pre-treatment 18F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog (n = 166) and digital (n = 51) PET cohorts. 18F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively. RESULTS: In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUVmax, metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, p < 0.001) and digital PET cohorts (HR = 1.284, p = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, p < 0.001, c-index = 0.708 and HR = 1.256, p = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively). CONCLUSIONS: Combining 18F-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.

4.
Thromb Res ; 238: 132-140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704897

ABSTRACT

BACKGROUND: This systematic review assesses the likelihood of developing dementia and cognitive impairment in patients with atrial fibrillation (AF) receiving non-vitamin K antagonist oral anticoagulants (NOACs) as opposed to vitamin K antagonists (VKAs). METHODS: We performed a systematic review with meta-analysis and trial sequential analysis (TSA), which encompassed both randomized controlled trials (RCTs) and observational studies. The objective was to assess the impact of NOACs and VKAs on the incidence of dementia in individuals diagnosed with AF. RESULTS: Out of 1914 studies that were screened, 31 studies were included in the final analysis, which consisted of nine RCTs or their subsequent post-hoc analyses, in addition to 22 observational studies. The meta-analysis shows that NOACs were associated with a decreased probability of developing dementia of any cause [Rate Ratio (RR): 0.88; 95 % confidence interval (95 % CI): 0.82-0.94], especially in patients below the age of 75 (RR: 0.78; 95 % CI: 0.73-0.84). Consistent patterns were observed across all forms of dementia and cognitive function decline. The overall evidence indicates notable variability in the outcome with a moderate-to-low degree of certainty. The TSA suggests that the total sample size of the included trials (155,647 patients) was significantly smaller than the required information size of 784,692 patients to discern the true effect of NOAC versus VKA in terms of reducing dementia risk. CONCLUSION: NOACs may reduce the likelihood of developing dementia in patients with AF, particularly in those under the age of 75. This review highlights the urgent necessity for thorough research to determine the efficacy of NOACs in safeguarding cognitive health.


Subject(s)
Anticoagulants , Atrial Fibrillation , Humans , Atrial Fibrillation/drug therapy , Atrial Fibrillation/complications , Anticoagulants/therapeutic use , Administration, Oral , Dementia , Cognitive Dysfunction , Randomized Controlled Trials as Topic , Cognition Disorders , Aged
5.
Arch Orthop Trauma Surg ; 144(6): 2839-2847, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739153

ABSTRACT

INTRODUCTION: The choice between a cementless taper wedge stem and a fit-and-fill stem in total Hip arthroplasty (THA) for various proximal femoral morphological types has not been thoroughly evaluated. This study aimed to compare the risk of stem-related complications between these two stem types in Dorr type A, B, and C femurs. MATERIALS AND METHODS: From January 2015 through April 2021, we retrospectively reviewed 1995 cementless THA procedures. We stratified all procedures into three groups: Dorr type A (N = 360, 18.0%), B (N = 1489, 74.7%) and C (N = 146, 7.3%). The primary outcome domain was stem-related complications, including stem subsidence ≥ 3 mm, intraoperative fracture, periprosthetic fracture and aseptic stem loosening. We performed multivariate regression analysis to compare the risk of stem-related complication between the two stem types. Other factors included age, sex, body mass index, diagnosis, age-adjusted Charlson comorbidity index, stem alignment and canal fill ratio. RESULTS: The incidence of stem-related complications in the taper wedge and fit-and-fill stem groups was 4.4% (N = 15) and 6.5% (N = 107), respectively. Fit-and-fill stems showed an increased risk of stem-related complications (aOR: 9.903, 95% CI: 1.567-62.597) only in Dorr type C femurs. No significant difference in risk was observed in Dorr type A and B femurs. Furthermore, the canal fill ratio at the lesser trochanter, 2 cm and 7 cm below the lesser trochanter, did not exhibit an association with stem-related complications in any Dorr type. CONCLUSIONS: Concerning the risk of stem-related complications, the taper wedge stem was a better choice in Dorr type C femurs. However, there was no difference in risk between the taper wedge stem and fit-and-fill stem in Dorr type A and B femurs.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Postoperative Complications , Prosthesis Design , Humans , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Hip/methods , Male , Female , Hip Prosthesis/adverse effects , Retrospective Studies , Middle Aged , Aged , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Prosthesis Failure , Femur/surgery , Risk Factors , Adult , Aged, 80 and over
6.
Angew Chem Int Ed Engl ; : e202407702, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38751355

ABSTRACT

The current bottleneck in the development of efficient photocatalysts for hydrogen evolution is the limited availability of high-performance acceptor units. Over the past nine years, dibenzo[b,d]thiophene sulfone (DBS) has been the preferred choice for the acceptor unit. Despite extensive exploration of alternative structures as potential replacements for DBS, a superior substitute remains elusive. In this study, a symmetry-breaking strategy was employed on DBS to develop a novel acceptor unit, BBTT-1SO. The asymmetric structure of BBTT-1SO proved beneficial for increasing multiple moment and polarizability. BBTT-1SO-containing polymers showed higher efficiencies for hydrogen evolution than their DBS-containing counterparts by up to 166 %. PBBTT-1SO exhibited an excellent hydrogen evolution rate (HER) of 222.03 mmol g-1 h-1 and an apparent quantum yield of 27.5 % at 500 nm. Transient spectroscopic studies indicated that the BBTT-1SO-based polymers facilitated electron polaron formation, which explains their superior HERs. PBBTT-1SO also showed 14 % higher HER in natural seawater splitting than that in deionized water splitting. Molecular dynamics simulations highlighted the enhanced water-PBBTT-1SO polymer interactions in salt-containing solutions. This study presents a pioneering example of a substitute acceptor unit for DBS in the construction of high-performance photocatalysts for hydrogen evolution.

7.
Proc Natl Acad Sci U S A ; 121(15): e2320505121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38568977

ABSTRACT

The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.


Subject(s)
Synapses , Synaptic Vesicles , Synapses/metabolism , Synaptic Vesicles/metabolism , Action Potentials , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Synaptic Transmission/physiology
8.
J Biomed Sci ; 31(1): 39, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637878

ABSTRACT

BACKGROUND: High levels of neutrophil extracellular trap (NET) formation or NETosis and autoantibodies are related to poor prognosis and disease severity of COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. METHODS: In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. RESULTS: An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. CONCLUSIONS: Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.


Subject(s)
COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19 Vaccines , Dasatinib , Immunoglobulin G/metabolism , Autoantibodies/metabolism , Spike Glycoprotein, Coronavirus , Protein Binding
9.
Biomedicines ; 12(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398060

ABSTRACT

This in vitro study examines the anti-oral cancer effects and mechanisms of a combined X-ray/SK2 treatment, i.e., X-ray and 6-n-butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.02,7]trideca-2,4,6,10-tetraene (SK2). ATP cell viability and flow cytometry-based cell cycle, apoptosis, oxidative stress, and DNA damage assessments were conducted. The X-ray/SK2 treatment exhibited lower viability in oral cancer (Ca9-22 and CAL 27) cells than in normal (Smulow-Glickman, S-G) cells, i.e., 32.0%, 46.1% vs. 59.0%, which showed more antiproliferative changes than with X-ray or SK2 treatment. Oral cancer cells under X-ray/SK2 treatment showed slight subG1 and G2/M increments and induced high annexin V-monitored apoptosis compared to X-ray or SK2 treatment. The X-ray/SK2 treatment showed higher caspase 3 and 8 levels for oral cancer cells than other treatments. X-ray/SK2 showed a higher caspase 9 level in CAL 27 cells than other treatments, while Ca9-22 cells showed similar levels under X-ray and/or SK2. The X-ray/SK2 treatment showed higher reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) depletion than other treatments. Meanwhile, the mitochondrial superoxide (MitoSOX) and glutathione levels in X-ray/SK2 treatment did not exhibit the highest rank compared to others. Moreover, oral cancer cells had higher γH2AX and/or 8-hydroxy-2-deoxyguanosine levels from X-ray/SK2 treatment than others. All these measurements for X-ray/SK2 in oral cancer cells were higher than in normal cells and attenuated by N-acetylcysteine. In conclusion, X-ray/SK2 treatment showed ROS-dependent enhanced antiproliferative, apoptotic, and DNA damage effects in oral cancer cells with a lower cytotoxic influence on normal cells.

10.
Chem Asian J ; 19(6): e202300955, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38332680

ABSTRACT

Activation of inert CO2 molecules for the reverse water gas shift (RWGS) reaction is tackled by incorporating magnesium oxide as a support material for copper, forming a Cu/MgO supported catalyst. The RWGS performance is greatly improved when compared with pure Cu or carbon supported Cu (Cu/C). Operating under a weight hourly space velocity (WHSV) of 300,000 mL ⋅ g-1 ⋅ h-1, the Cu/MgO catalyst demonstrates high activity, maintaining over 70 % equilibrium conversion and nearly 100 % CO selectivity in a temperature range of 300-600 °C. In contrast, both Cu/C and commercial Cu, even at ten-times lower WHSV, can only achieve up to 40 % of the equilibrium conversion and quickly deactivated due to sintering. Based on the studies of in-situ temperature resolved infrared spectroscopy and temperature programmed desorption, the improved RWGS performance is attributed to the unique adsorption behavior of CO2 on Cu/MgO. Density functional theory studies provides a plausible explanation from a surface reaction perspective and reveals the spill-over property of CO2 from MgO to Cu being critical.

11.
Nat Commun ; 15(1): 707, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267492

ABSTRACT

Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).

12.
Tech Hand Up Extrem Surg ; 28(1): 12-15, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37694879

ABSTRACT

Wrist arthroscopy could be a treatment option for dorsal ganglion cysts. To achieve a thorough dorsal capsulectomy for the removal of midcarpal ganglion cysts, it is commonly necessary to combine both the radiocarpal and midcarpal portals. We present a modified method using radiocarpal portals only for arthroscopically excising dorsal midcarpal ganglion cysts. No extra midcarpal portals are necessary, and the method potentially generates satisfactory results.


Subject(s)
Ganglion Cysts , Humans , Ganglion Cysts/surgery , Wrist Joint/surgery , Arthroscopy/methods
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003761

ABSTRACT

ObjectiveTo observe the therapeutic effect of Qiwei Baizhusan(QWBZS) on diabetic encephalopathy(DE) rat model, and to explore the possible mechanism of QWBZS in the treatment of DE based on phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK-3β) signaling pathway. MethodForty-eight SPF male Wistar rats were randomly divided into blank group(8 rats) and high-fat diet group(40 rats). After 12 weeks of feeding, rats in the high-fat diet group were intraperitoneally injected with 35 mg·kg-1 of 1% streptozotocin(STZ) for 2 consecutive days to construct a DE model, and rats in the blank group were injected with the same amount of sodium citrate buffer. After successful modeling, according to blood glucose and body weight, model rats were randomly divided into model group, low, medium and high dose groups of QWBZS(3.15, 6.3, 12.6 g·kg-1), combined western medicine group(metformin+rosiglitazone, 0.21 g·kg-1), with 6 rats in each group. The administration group was given the corresponding dose of drug by gavage, and the blank group and the model group were given an equal volume of 0.9% sodium chloride solution by gavage, 1 time/day for 6 weeks. Morris water maze was used to detect the spatial memory ability of DE rats. Fasting insulin (FINS) level was detected by enzyme-linked immunosorbent assay(ELISA) and insulin resistance index(HOMA-IR) was calculated. Hematoxylin-eosin(HE) staining was used to observe the morphological changes of hippocampus in rats, ELISA was used to detect the indexes of oxidative stress in hippocampal tissues, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect mRNA expression levels of PI3K, Akt, nuclear transcription factor-κB(NF-κB), tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in hippocampus, and Western blot was used to detect the protein expression of PI3K, Akt, phosphorylated(p)-Akt, GSK-3β and p-GSK-3β in hippocampus of rats. ResultCompared with the blank group, FINS and HOMA-IR values of the model group were significantly increased(P<0.01), the path of finding the original position of the platform was significantly increased, and the escape latency was significantly prolonged(P<0.01), the morphology of neuronal cells in hippocampal tissues was disrupted, the levels of reactive oxygen species(ROS) and malondialdehyde(MDA) in hippocampus of rats were increased, and the activity of superoxide dismutase(SOD) was decreased(P<0.05, P<0.01), mRNA expression levels of PI3K and Akt were decreased(P<0.01), mRNA expression levels of NF-κB, TNF-α and IL-1β were increased(P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly decreased, and the protein expression of GSK-3β was significantly increased(P<0.01). Compared with the model group, the FINS and HOMA-IR values of the medium dose group of QWBZS and the combined western medicine group were significantly decreased(P<0.01), the path of finding the original position of the platform and the escape latency were significantly shortened(P<0.01), the hippocampal tissue structure of rats was gradually recovered, and the morphological damage of nerve cells was significantly improved, the contents of ROS and MDA in hippocampus of rats decreased and the level of SOD increased(P<0.01), the mRNA expression levels of PI3K and Akt were increased(P<0.01), and the mRNA expression levels of NF-κB, TNF-α and IL-1β were decreased (P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly increased(P<0.01), and the expression of GSK-3β was significantly decreased(P<0.01). ConclusionQWBZS can alleviate insulin resistance in DE rats, it may repair hippocampal neuronal damage and improve learning and cognitive ability of DE rats by activating PI3K/Akt/GSK-3β signaling pathway.

14.
J Appl Clin Med Phys ; 24(12): e14200, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37937706

ABSTRACT

PURPOSE: 18 F-FDG PET quantitative features are susceptible to respiratory motion. However, studies using clinical patient data to explore the impact of respiratory motion on 18 F-FDG PET radiomic features are limited. In this study, we investigated the impact of respiratory motion on radiomics stability with clinical 18 F-FDG PET images using a data-driven gating (DDG) algorithm on the digital PET scanner. MATERIALS AND METHODS: A total of 101 patients who underwent oncological 18 F-FDG PET scans were retrospectively included. A DDG algorithm combined with a motion compensation technique was used to extract the PET images with respiratory motion correction. 18 F-FDG-avid lesions from the thorax to the upper abdomen were analyzed on the non-DDG and DDG PET images. The lesions were segmented with a 40% threshold of the maximum standardized uptake. A total of 725 radiomic features were computed from the segmented lesions, including first-order, shape, texture, and wavelet features. The intraclass correlation coefficient (ICC) and coefficient of variation (COV) were calculated to evaluate feature stability. An ICC above 0.9 and a COV below 5% were considered high stability. RESULTS: In total, 168 lesions with and without respiratory motion correction were analyzed. Our results indicated that most 18 F-FDG PET radiomic features are sensitive to respiratory motion. Overall, only 27 out of 725 (3.72%) radiomic features were identified as highly stable, including one from the first-order features (entropy), one from the shape features (sphericity), four from the gray-level co-occurrence matrix features (normalized and unnormalized inverse difference moment, joint entropy, and sum entropy), one from the gray-level run-length matrix features (run entropy), and 20 from the wavelet filter-based features. CONCLUSION: Respiratory motion has a significant impact on 18 F-FDG PET radiomics stability. The highly stable features identified in our study may serve as potential candidates for further applications, such as machine learning modeling.


Subject(s)
Fluorodeoxyglucose F18 , Image Processing, Computer-Assisted , Humans , Retrospective Studies , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Motion , Positron Emission Tomography Computed Tomography/methods
15.
Nat Commun ; 14(1): 6524, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845260

ABSTRACT

Catalytic hydrogenolysis is a promising approach to transform waste plastic into valuable chemicals. However, the transformation of N-containing polymers, such as polyamides (i.e. nylon), remains under-investigated, particularly by heterogeneous catalysis. Here, we demonstrate the hydrogenolysis of various polyamides catalysed by platinum-group metal nanoparticles supported on CeO2. Ru/CeO2 and Pt/CeO2 are both highly active but display different selectivity; Ru/CeO2 is selective for the conversion of all polyamides into water, ammonia, and methane, whereas Pt/CeO2 yields hydrocarbons retaining the carbon backbone of the parent polyamide. Density functional theory computations illustrate that Pt nanoparticles require higher activation energy for carbon-carbon bond cleavage than Ru nanoparticles, rationalising the observed selectivity. The high activity and product selectivity of both catalysts was maintained when converting real-world polyamide products, such as fishing net. This study provides a mechanistic basis for heterogeneously catalysed polyamide hydrogenolysis, and a new approach to the valorisation of polyamide containing waste.

16.
Nucl Med Commun ; 44(12): 1094-1105, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37728592

ABSTRACT

OBJECTIVE: The performance of 18 F-FDG PET-based radiomics and deep learning in detecting pathological regional nodal metastasis (pN+) in resectable lung adenocarcinoma varies, and their use across different generations of PET machines has not been thoroughly investigated. We compared handcrafted radiomics and deep learning using different PET scanners to predict pN+ in resectable lung adenocarcinoma. METHODS: We retrospectively analyzed pretreatment 18 F-FDG PET from 148 lung adenocarcinoma patients who underwent curative surgery. Patients were separated into analog (n = 131) and digital (n = 17) PET cohorts. Handcrafted radiomics and a ResNet-50 deep-learning model of the primary tumor were used to predict pN+ status. Models were trained in the analog PET cohort, and the digital PET cohort was used for cross-scanner validation. RESULTS: In the analog PET cohort, entropy, a handcrafted radiomics, independently predicted pN+. However, the areas under the receiver-operating-characteristic curves (AUCs) and accuracy for entropy were only 0.676 and 62.6%, respectively. The ResNet-50 model demonstrated a better AUC and accuracy of 0.929 and 94.7%, respectively. In the digital PET validation cohort, the ResNet-50 model also demonstrated better AUC (0.871 versus 0.697) and accuracy (88.2% versus 64.7%) than entropy. The ResNet-50 model achieved comparable specificity to visual interpretation but with superior sensitivity (83.3% versus 66.7%) in the digital PET cohort. CONCLUSION: Applying deep learning across different generations of PET scanners may be feasible and better predict pN+ than handcrafted radiomics. Deep learning may complement visual interpretation and facilitate tailored therapeutic strategies for resectable lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Deep Learning , Lung Neoplasms , Humans , Fluorodeoxyglucose F18 , Lymphatic Metastasis , Retrospective Studies , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/surgery , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery
17.
Anal Chim Acta ; 1276: 341651, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37573127

ABSTRACT

There are more than 200 subtypes of human papillomavirus (HPV), and high-risk HPVs are a leading cause of cervical cancer. Identifying the genotypes of HPV is significant for clinical diagnosis and cancer control. Herein, we used programmable and modified DNA as the backbone to construct fluorescent genotyping nanodevice for HPV subtype distinction. In our strategy, the dye-labeled single-stranded recognize-DNA (R-DNA) was hybridized with Black Hole Quencher (BHQ) labeled single-stranded link-DNA (L-DNA) to form three functionalized DNA (RL-DNA). Through the extension of polycytosine (poly-C) in L-DNA, three RL-DNAs can be more firmly adsorbed on graphene oxide to construct reliable genotyping nanodevice. The genotyping nanodevice had low background noise since the dual energy transfer, including Förster resonance energy transfer (FRET) from dye to BHQ and the resonance energy transfer (RET) from dye to graphene oxide. Meanwhile, the programmability of DNA allows the proposed strategy to simultaneously and selectively distinguish several HPV subtypes in solution using DNA labeled with different dyes. To demonstrate clinical potential, we show multiplexed assay of HPV subtypes in cervical scrapes, and it has been successfully applied in HPV-DNA analysis in cervical scrapes samples. The genotyping nanodevice could be developed for simultaneous and multiplex analysis of several oligonucleotides in a homogeneous solution by adjusting the recognition sequence, demonstrating its potential application in the rapid screening of multiple biomarkers.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Genotype , Human Papillomavirus Viruses , Papillomavirus Infections/diagnosis , Papillomaviridae/genetics , Uterine Cervical Neoplasms/diagnosis , DNA, Viral/genetics , DNA, Viral/analysis
18.
J Chem Phys ; 159(2)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37428064

ABSTRACT

By considering only one electronic state per molecule, charge transport models of molecular solids neglect intramolecular charge transfer. This approximation excludes materials with quasi-degenerate spatially separated frontier orbitals, such as non-fullerene acceptors (NFAs) and symmetric thermally activated delayed fluorescence emitters. By analyzing the electronic structure of room-temperature molecular conformers of a prototypical NFA, ITIC-4F, we conclude that the electron is localized on one of the two acceptor blocks with the mean intramolecular transfer integral of 120 meV, which is comparable with intermolecular couplings. Therefore, the minimal basis for acceptor-donor-acceptor (A-D-A) molecules consists of two molecular orbitals localized on the acceptor blocks. This basis is robust even with respect to geometry distortions in an amorphous solid, in contrast to the basis of two lowest unoccupied canonical molecular orbitals withstanding only thermal fluctuations in a crystal. The charge carrier mobility can be underestimated by a factor of two when using single site approximation for A-D-A molecules in their typical crystalline packings.

19.
Nat Mater ; 22(9): 1114-1120, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37386064

ABSTRACT

A common obstacle of many organic semiconductors is that they show highly unipolar charge transport. This unipolarity is caused by trapping of either electrons or holes by extrinsic impurities, such as water or oxygen. For devices that benefit from balanced transport, such as organic light-emitting diodes, organic solar cells and organic ambipolar transistors, the energy levels of the organic semiconductors are ideally situated within an energetic window with a width of 2.5 eV where charge trapping is strongly suppressed. However, for semiconductors with a band gap larger than this window, as used in blue-emitting organic light-emitting diodes, the removal or disabling of charge traps poses a longstanding challenge. Here we demonstrate a molecular strategy where the highest occupied molecular orbital and lowest unoccupied molecular orbital are spatially separated on different parts of the molecules. By tuning their stacking by modification of the chemical structure, the lowest unoccupied molecular orbitals can be spatially protected from impurities that cause electron trapping, increasing the electron current by orders of magnitude. In this way, the trap-free window can be substantially broadened, opening a path towards large band gap organic semiconductors with balanced and trap-free transport.

20.
Small ; 19(42): e2302682, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37322304

ABSTRACT

Conjugated polymers (CPs) have recently gained increasing attention as photocatalysts for sunlight-driven hydrogen evolution. However, they suffer from insufficient electron output sites and poor solubility in organic solvents, severely limiting their photocatalytic performance and applicability. Herein, solution-processable all-acceptor (A1 -A2 )-type CPs based on sulfide-oxidized ladder-type heteroarene are synthesized. A1 -A2 -type CPs showed upsurging efficiency improvements by two to three orders of magnitude, compared to their donor-acceptor -type CP counterparts. Furthermore, by seawater splitting, PBDTTTSOS exhibited an apparent quantum yield of 18.9% to 14.8% at 500 to 550 nm. More importantly, PBDTTTSOS achieved an excellent hydrogen evolution rate of 35.7 mmol h-1  g-1 and 150.7 mmol h-1  m-2 in the thin-film state, which is among the highest efficiencies in thin film polymer photocatalysts to date. This work provides a novel strategy for designing polymer photocatalysts with high efficiency and broad applicability.

SELECTION OF CITATIONS
SEARCH DETAIL
...