Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 318(2): E286-E296, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31891539

ABSTRACT

Increased myocardial partitioning of dietary fatty acids (DFA) and decreased left ventricular (LV) function is associated with insulin resistance in prediabetes. We hypothesized that enhanced myocardial DFA partitioning and reduced LV function might be induced concomitantly with reduced insulin sensitivity upon a 7-day hypercaloric (+50% in caloric intake), high-saturated fat (~11%energy), and simple carbohydrates (~54%energy) diet (HIGHCAL) versus an isocaloric diet (ISOCAL) with a moderate amount of saturated fat (~8%energy) and carbohydrates (~50%energy). Thirteen healthy subjects (7 men/6 women) underwent HIGHCAL versus ISOCAL in a randomized crossover design, with organ-specific DFA partitioning and LV function measured using the oral 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid and [11C]acetate positron emission tomography methods at the end of both interventions. HIGHCAL induced a decrease in insulin sensitivity indexes with no significant change in body composition. HIGHCAL led to increased subcutaneous abdominal (+4.2 ± 1.6%, P < 0.04) and thigh (+2.4 ± 1.2%, P < 0.08) adipose tissue storage and reduced cardiac (-0.31 ± 0.11 mean standard uptake value [(SUV), P < 0.03] and skeletal muscle (-0.17 ± 0.08 SUV, P < 0.05) DFA partitioning without change in LV function. We conclude that early increase in adipose tissue DFA storage protects the heart and skeletal muscles from potential deleterious effects of DFA.


Subject(s)
Adipose Tissue/metabolism , Dietary Fats/pharmacology , Fatty Acids/metabolism , Hyperphagia/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Adult , Body Composition , Cross-Over Studies , Dietary Carbohydrates/pharmacology , Female , Healthy Volunteers , Humans , Insulin Resistance , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Positron-Emission Tomography , Ventricular Function, Left/drug effects
2.
Diabetes ; 64(11): 3690-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26224886

ABSTRACT

Subjects with impaired glucose tolerance (IGT) have increased myocardial partitioning of dietary fatty acids (DFAs) with left ventricular dysfunction, both of which are improved by modest weight loss over 1 year induced by lifestyle changes. Here, we determined the effects of a 7-day hypocaloric diet (-500 kcal/day) low in saturated fat (<7% of energy) (LOWCAL study) versus isocaloric with the usual amount saturated fat (∼10% of energy) diet (ISOCAL) on DFA metabolism in subjects with IGT. Organ-specific DFA partitioning and cardiac and hepatic DFA fractional uptake rates were measured in 15 IGT subjects (7 males/8 females) using the oral 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid positron emission tomography method after 7 days of an ISOCAL diet versus a LOWCAL diet using a randomized crossover design. The LOWCAL diet led to reductions in weight and postprandial insulin area under the curve. Myocardial DFA partitioning over 6 h was increased after the LOWCAL diet (2.3 ± 0.1 vs. 1.9 ± 0.2 mean standard uptake value, P < 0.04). However, the early (90-120 min) myocardial DFA fractional uptake was unchanged after the LOWCAL diet (0.055 ± 0.025 vs. 0.046 ± 0.009 min(-1), P = 0.7). Liver DFA partitioning was unchanged, but liver fractional uptake of DFA tended to be increased. Very short-term caloric and saturated fat dietary restrictions do not lead to the same changes in organ-specific DFA metabolism as those associated with weight loss in subjects with IGT.


Subject(s)
Caloric Restriction , Dietary Fats/metabolism , Fatty Acids/metabolism , Glucose Intolerance/metabolism , Myocardium/metabolism , Adult , Aged , Blood Glucose/metabolism , Cross-Over Studies , Diet, Reducing , Female , Glucose Intolerance/diet therapy , Humans , Insulin/blood , Male , Middle Aged , Treatment Outcome
3.
Diabetes ; 64(7): 2388-97, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25677914

ABSTRACT

Spontaneous glucose uptake by brown adipose tissue (BAT) is lower in overweight or obese individuals and in diabetes. However, BAT metabolism has not been previously investigated in patients with type 2 diabetes during controlled cold exposure. Using positron emission tomography with (11)C-acetate, (18)F-fluoro-deoxyglucose ((18)FDG), and (18)F-fluoro-thiaheptadecanoic acid ((18)FTHA), a fatty acid tracer, BAT oxidative metabolism and perfusion and glucose and nonesterified fatty acid (NEFA) turnover were determined in men with well-controlled type 2 diabetes and age-matched control subjects under experimental cold exposure designed to minimize shivering. Despite smaller volumes of (18)FDG-positive BAT and lower glucose uptake per volume of BAT compared with young healthy control subjects, cold-induced oxidative metabolism and NEFA uptake per BAT volume and an increase in total body energy expenditure did not differ in patients with type 2 diabetes or their age-matched control subjects. The reduction in (18)FDG-positive BAT volume and BAT glucose clearance were associated with a reduction in BAT radiodensity and perfusion. (18)FDG-positive BAT volume and the cold-induced increase in BAT radiodensity were associated with an increase in systemic NEFA turnover. These results show that cold-induced NEFA uptake and oxidative metabolism are not defective in type 2 diabetes despite reduced glucose uptake per BAT volume and BAT "whitening."


Subject(s)
Adipose Tissue, Brown/metabolism , Diabetes Mellitus, Type 2/metabolism , Fatty Acids, Nonesterified/metabolism , Glucose/metabolism , Adult , Cold Temperature , Energy Metabolism , Fluorodeoxyglucose F18 , Humans , Male , Middle Aged , Oxidation-Reduction
4.
Diabetes ; 64(7): 2432-41, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25503741

ABSTRACT

Oral 14(R,S)-[(18)F]-fluoro-6-thia-heptadecanoic acid was used to determine whether an increase in cardiac dietary fatty acid (DFA) metabolism in impaired glucose tolerance (IGT) is different in men and women. Myocardial DFA partitioning after 6 h was higher in IGT versus control subjects (P = 0.006) in both men (2.14 [95% CI 1.70-2.18] vs. 1.28 standard uptake value [SUV] units [0.80-1.76]) and women (1.95 [1.57-2.33] vs. 1.64 SUV units [1.32-1.96]) without difference between sexes. Myocardial DFA fractional uptake (Ki) between time 90 and 120 min postprandially was also higher in IGT versus control subjects (P < 0.001) in men (0.063 [0.032-0.095] vs. 0.016 min(-1) [0.007-0.025]) and women (0.050 [0.024-0.077] vs. 0.030 min(-1) [0.013-0.047]) without significant sex difference. Men had higher net myocardial DFA uptake between time 90 and 120 min driven by higher chylomicron-triglyceride (TG) levels. IGT-associated increased cardiac DFA partitioning was directly related to obesity in women, whereas it was associated with IGT per se in men. We conclude that early cardiac DFA uptake is higher in men driven by change in postprandial chylomicron-TG level but that increase in 6-h postprandial cardiac DFA partitioning nevertheless occurs with IGT both in men and women.


Subject(s)
Fatty Acids/metabolism , Glucose Intolerance/metabolism , Adipose Tissue/metabolism , Adult , Fatty Acids/administration & dosage , Female , Fluorine Radioisotopes , Humans , Insulin Resistance , Male , Middle Aged , Myocardium/metabolism , Organ Specificity , Positron-Emission Tomography , Sex Characteristics , Tomography, X-Ray Computed
5.
Am J Physiol Endocrinol Metab ; 306(12): E1388-96, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24760989

ABSTRACT

Using a novel positron emission tomography (PET) method with oral administration of 14(R,S)-[¹8F]-fluoro-6-thia-heptadecanoic acid (¹8FTHA), we recently demonstrated that subjects with impaired glucose tolerance (IGT) display an impairment in cardiac function associated with increased myocardial uptake of dietary fatty acids. Here, we determined whether modest weight loss induced by lifestyle changes might improve these cardiac metabolic and functional abnormalities. Nine participants with IGT, enrolled in a one-year lifestyle intervention trial, were invited to undergo determination of organ-specific postprandial dietary fatty acids partition using the oral ¹8FTHA method, and cardiac function and oxidative metabolic index using PET [¹¹C]acetate kinetics with ECG-gated PET ventriculography before and after the intervention. The intervention resulted in significant weight loss and reduction of waist circumference, with reduced postprandial plasma glucose, insulin, and triglycerides excursion. We observed a significant increase in stroke volume, cardiac output, and left ventricular ejection fraction associated with reduced myocardial oxidative metabolic index and fractional dietary fatty acid uptake. Modest weight loss corrects the exaggerated myocardial channeling of dietary fatty acids and improves myocardial energy substrate metabolism and function in IGT subjects.


Subject(s)
Dietary Fats/metabolism , Glucose Intolerance/prevention & control , Heart Ventricles/physiopathology , Life Style , Obesity/therapy , Ventricular Dysfunction, Left/prevention & control , Weight Loss , Acetic Acid , Body Mass Index , Carbon Radioisotopes , Combined Modality Therapy , Diet, Reducing , Fatty Acids , Female , Fluorine Radioisotopes , Glucose Intolerance/etiology , Heart Ventricles/diagnostic imaging , Heart Ventricles/metabolism , Humans , Male , Middle Aged , Motor Activity , Obesity/diet therapy , Obesity/metabolism , Obesity/physiopathology , Positron-Emission Tomography , Postprandial Period , Radionuclide Ventriculography , Radiopharmaceuticals , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology
6.
J Clin Endocrinol Metab ; 99(3): E438-46, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24423363

ABSTRACT

CONTEXT: Recent studies examining brown adipose tissue (BAT) metabolism in adult humans have provided convincing evidence of its thermogenic potential and role in clearing circulating glucose and fatty acids under acute mild cold exposure. In contrast, early indications suggest that BAT metabolism is defective in obesity and type 2 diabetes, which may have important pathological and therapeutic implications. Although many mammalian models have demonstrated the phenotypic flexibility of this tissue through chronic cold exposure, little is known about the metabolic plasticity of BAT in humans. OBJECTIVE: Our objective was to determine whether 4 weeks of daily cold exposure could increase both the volume of metabolically active BAT and its oxidative capacity. DESIGN: Six nonacclimated men were exposed to 10°C for 2 hours daily for 4 weeks (5 d/wk), using a liquid-conditioned suit. Using electromyography combined with positron emission tomography with [(11)C]acetate and [(18)F]fluorodeoxyglucose, shivering intensity and BAT oxidative metabolism, glucose uptake, and volume before and after 4 weeks of cold acclimation were examined under controlled acute cold-exposure conditions. RESULTS: The 4-week acclimation protocol elicited a 45% increase in BAT volume of activity (from 66 ± 30 to 95 ± 28 mL, P < .05) and a 2.2-fold increase in cold-induced total BAT oxidative metabolism (from 0.725 ± 0.300 to 1.591 ± 0.326 mL·s(-1), P < .05). Shivering intensity was not significantly different before compared with after acclimation (2.1% ± 0.7% vs 2.0% ± 0.5% maximal voluntary contraction, respectively). Fractional glucose uptake in BAT increased after acclimation (from 0.035 ± 0.014 to 0.048 ± 0.012 min(-1)), and net glucose uptake also trended toward an increase (from 163 ± 60 to 209 ± 50 nmol·g(-1)·min(-1)). CONCLUSIONS: These findings demonstrate that daily cold exposure not only increases the volume of metabolically active BAT but also increases its oxidative capacity and thus its contribution to cold-induced thermogenesis.


Subject(s)
Acclimatization , Adipose Tissue, Brown/metabolism , Cold Temperature , Acetic Acid , Adipose Tissue, Brown/anatomy & histology , Adipose Tissue, Brown/diagnostic imaging , Adult , Body Temperature Regulation , Carbon Radioisotopes , Energy Metabolism , Fluorodeoxyglucose F18 , Humans , Male , Organ Size , Oxidation-Reduction , Positron-Emission Tomography , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...