Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675582

ABSTRACT

Piper betle leaf powder is increasingly utilised as a health supplement. In this study, P. betle leaves were subjected to four different drying methods: convective air-drying, oven-drying, sun-drying, and no drying, with fresh leaves as control. Their antioxidant properties were then evaluated using colourimetric assays and GC-MS. Results showed that the sun-dried leaves had the highest (p < 0.05) total antioxidant capacity (66.23 ± 0.10 mg AAE/g), total polyphenol content (133.93 ± 3.76 mg GAE/g), total flavonoid content (81.25 ± 3.26 mg CE/g) and DPPH radical scavenging activity (56.48 ± 0.11%), and the lowest alkaloid content (45.684 ± 0.265 mg/gm). GC-MS analysis revealed that major constituents of aqueous extracts of fresh and sun-dried P. betle leaves were hydrazine 1,2-dimethyl-; ethyl aminomethylformimidate; glycerin; propanoic acid, 2-hydroxy-, methyl ester, (+/-)-; and 1,2-Cyclopentanedione. In conclusion, sun-dried leaves exhibited overall better antioxidant properties, and their aqueous extracts contained biologically active phytoconstituents that have uses in various fields.


Subject(s)
Antioxidants , Desiccation , Piper betle , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Piper betle/chemistry , Plant Extracts/chemistry , Desiccation/methods , Flavonoids/chemistry , Flavonoids/analysis , Polyphenols/chemistry , Polyphenols/analysis , Gas Chromatography-Mass Spectrometry , Alkaloids/chemistry , Alkaloids/analysis
2.
PLoS One ; 17(12): e0279129, 2022.
Article in English | MEDLINE | ID: mdl-36574419

ABSTRACT

The objective of this study was to compare the characteristics of Dental Pulp Stem Cells (DPSCs) derived from healthy human permanent teeth with those that were orthodontically-intruded to serve as potential Mesenchymal Stem Cells (MSC). Recruited subjects were treated with orthodontic intrusion on one side of the maxillary first premolar while the opposite side served as the control for a period of six weeks before the dental pulp was extracted. Isolated DPSCs from both the control and intruded samples were analyzed, looking at the morphology, growth kinetics, cell surface marker profile, and multilineage differentiation for MSC characterisation. Our study showed that cells isolated from both groups were able to attach to the cell culture flask, exhibited fibroblast-like morphology under light microscopy, able to differentiate into osteogenic, adipogenic and chondrogenic lineages as well as tested positive for MSCs cell surface markers CD90 and CD105 but negative for haematopoietic cell surface markers CD34 and HLA-DR. Both groups displayed a trend of gradually increasing population doubling time from passage 1 to passage 5. Viable DPSCs from both groups were successfully recovered from their cryopreserved state. In conclusion, DPSCs in the dental pulp of upper premolar not only remained viable after 6 weeks of orthodontic intrusion using fixed appliances but also able to develop into MSCs.


Subject(s)
Dental Pulp , Mesenchymal Stem Cells , Humans , Cell Differentiation , Adipogenesis , Dentition, Permanent , Cell Proliferation , Cells, Cultured , Osteogenesis
3.
PLoS One ; 17(10): e0274814, 2022.
Article in English | MEDLINE | ID: mdl-36197921

ABSTRACT

Mesenchymal stem cells (MSCs) have seen an elevated use in clinical works like regenerative medicine. Its potential therapeutic properties increases when used in tandem with complementary agents like bio-based materials. Therefore, the present study is the first to investigate the cytotoxicity of a highly valued medicinal plant, Moringa oleifera, on human Wharton's Jelly mesenchymal stem cells (hWJMSCs) and its effects on the cells' gene expression when used as a pre-treatment agent in vitro. M. oleifera leaves (MOL) were dried and subjected to UHPLC-QTOF/MS analysis, revealing several major compounds like apigenin, kaempferol, and quercetin in the MOL, with various biological activities like antioxidant and anti-cancer properties. We then treated the hWJMSCs with MOL and noticed a dose-dependant inhibition on the cells' proliferation. RNA-sequencing was performed to explain the possible mechanism of action and revealed genes like PPP1R1C, SULT2B1, CDKN1A, mir-154 and CCNB1, whose expression patterns were closely associated with the negative cell cycle regulation and cell cycle arrest process. This is also evident from gene set enrichment analysis where the GO and KEGG terms for down-regulated pathways were closely related to the cell cycle regulation. The Ingenuity pathway analysis (IPA) software further predicted the significant activation of (p < 0.05, z-score > 2) of the G2/M DNA damage checkpoint regulation pathway. The present study suggests that MOL exhibits an antiproliferative effect on hWJMSCs via cell cycle arrest and apoptotic pathways. We believe that this study provides an important baseline reference for future works involving MOL's potential to accompany MSCs for clinical works. Future works can take advantage of the cell's strong anti-cancer gene expression found in this study, and evaluate our MOL treatment on various cancer cell lines.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Moringa oleifera , Wharton Jelly , Antioxidants/metabolism , Apigenin/pharmacology , Cell Differentiation , Humans , Kaempferols/metabolism , Kaempferols/pharmacology , MicroRNAs/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Quercetin/pharmacology , RNA/metabolism
4.
Saudi J Biol Sci ; 29(6): 103290, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35521359

ABSTRACT

The recent COVID-19 pandemic resulted in major postharvest losses because most fresh produce could not be sold. Drying is an important thermal-based food preservation method which could have prolonged the shelf-life of these produce, but most drying technologies are costly, and cannot be afforded by small-time farmers. From this context, we were interested in evaluating the drying of Moringa oleifera leaves (MOL) using a low-cost self-built prototype convective-air dryer (CAD), alongside conventional drying methods for its antioxidant properties, microbial load and phytoconstituents. Results showed total polyphenol content was the highest (p < 0.05) in our CAD samples, and it retained among the highest total flavonoid content, total antioxidant capacity, total alkaloid content and DPPH radical scavenging activity. Furthermore, methanolic CAD extract presented lower coliform and yeast and mold count than the aqueous CAD extract. We also briefly explored MOL as a sanitizer where the microbial load of the methanolic extract was comparable (p > 0.05) with several commercial non-alcoholic sanitizers, indicating its commercialization potential as a bio-friendly sanitizer. Finally, using GC-MS, we are the first to report (best of our knowledge) on the presence of caprolactam, an important bio-medical field compound, in the CAD sample's aqueous extract.

5.
Polymers (Basel) ; 13(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502959

ABSTRACT

Cherry tomatoes are climacteric fruits that have a limited shelf life. Over the years, many methods have been applied to preserve the fruit quality and safety of these fruits. In this study, a novel method of combining mucilage from dragon fruits and UV-C irradiation was carried out. Cherry tomatoes were subjected to UV-C irradiation and edible coating, both as a stand-alone and hurdle treatment. The edible coating was prepared from the mucilage of white dragon fruits. Quality parameters including color, weight loss, total soluble solids, titratable acidity, ascorbic acid, antioxidant analysis (total phenolic content and flavonoid content), and microbial analysis were measured throughout 21 days of storage at 4 °C. Results showed that the hurdle treatment extended shelf life by 21 days, reduced weight loss (0.87 ± 0.05%) and color changes (11.61 ± 0.95 ΔE), and inhibited microbes better than stand-alone treatments. Furthermore, fruits treated with the combination of UV-C and edible coating also contained higher total polyphenol content (0.132 ± 0.003 mg GAE/100 mL), total flavonoid content (13.179 ± 0.002 mg CE/100 mL), and ascorbic acid (1.07 ± 0.06 mg/100 mL). These results show that the combination of UV-C and edible coating as a hurdle treatment could be an innovative method to preserve shelf life and quality of fruits.

6.
Naturwissenschaften ; 103(7-8): 62, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27379400

ABSTRACT

Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.


Subject(s)
Cell Differentiation , Culture Media/pharmacology , Hepatocytes/cytology , Periodontal Ligament/cytology , Stem Cells/cytology , Biomarkers/analysis , Cell Differentiation/drug effects , Culture Media/chemistry , Gene Expression Regulation, Developmental , Humans , Stem Cells/drug effects
7.
Clin Oral Investig ; 20(1): 109-16, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26048030

ABSTRACT

BACKGROUND AND OBJECTIVES: Long-term culture system is used to prevent the impediment of insufficient cells and is good for low starting materials such as dental pulp or periodontal ligament. In general, although cell viability and functionality are the most common aspects taken into consideration in culturing cells for a long term, they may not truly represent the biological state of the cells. Hence, we explored the behaviour of another important aspect which is the immune properties in long-term cultured cells. METHODS: Dental pulp stem cells from deciduous (SHED; n = 3) and permanent (DPSCs; n = 3) teeth as well as periodontal ligament stem cells (PDLSCs; n = 3) were cultured under identical culture condition. The immune properties of each cell lines were profiled at passage 2 [P2] and passage 9 [P9] as early and late passages, respectively. This was further validated at the protein level using the Luminex platform. RESULTS: A major shift of genes was noticed at P9 with SHED being the highest. SHED cultured at P9 displayed many genes representing pathogen recognition (P < 0.001), immune signalling (P < 0.001, pro-inflammatory (P < 0.001), anti-inflammatory (P < 0.001) and immune-related growth and stimulation factor (P < 0.001) as compared to DPSCs and PDLSCs. Surprisingly, SHED also expressed many cytotoxicity genes (P < 0.001). CONCLUSIONS: Communally, instabilities of immune genes from our findings suggest that long-term cultured cells may not be feasible for transplantation purposes. CLINICAL RELEVANCE: A complete biological characterization covering all major aspects including immune properties should be made as prerequisite criteria prior to the use of long-term cultured stem cells in clinical settings.


Subject(s)
Dental Pulp/cytology , Gene Expression Profiling , Periodontal Ligament/cytology , Stem Cells/immunology , Adult , Apoptosis/genetics , Apoptosis/immunology , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Cells, Cultured , Child , Cytokines/genetics , Cytokines/immunology , Humans , Signal Transduction , Tooth, Deciduous , Up-Regulation
8.
J Cell Mol Med ; 19(3): 566-80, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25475098

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that regulate translation of mRNA into protein and play a crucial role for almost all biological activities. However, the identification of miRNAs from mesenchymal stem cells (MSCs), especially from dental pulp, is poorly understood. In this study, dental pulp stem cells (DPSCs) were characterized in terms of their proliferation and differentiation capacity. Furthermore, 104 known mature miRNAs were profiled by using real-time PCR. Notably, we observed 19 up-regulated miRNAs and 29 significantly down-regulated miRNAs in DPSCs in comparison with bone marrow MSCs (BM-MSCs). The 19 up-regulated miRNAs were subjected to ingenuity analysis, which were composed into 25 functional networks. We have chosen top 2 functional networks, which comprised 10 miRNA (hsa-miR-516a-3p, hsa-miR-125b-1-3p, hsa-miR-221-5p, hsa-miR-7, hsa-miR-584-5p, hsa-miR-190a, hsa-miR-106a-5p, hsa-mir-376a-5p, hsa-mir-377-5p and hsa-let-7f-2-3p). Prediction of target mRNAs and associated biological pathways regulated by each of this miRNA was carried out. We paid special attention to hsa-miR-516a-3p and hsa-miR-7-5p as these miRNAs were highly expressed upon validation with qRT-PCR analysis. We further proceeded with loss-of-function analysis with these miRNAs and we observed that hsa-miR-516a-3p knockdown induced a significant increase in the expression of WNT5A. Likewise, the knockdown of hsa-miR-7-5p increased the expression of EGFR. Nevertheless, further validation revealed the role of WNT5A as an indirect target of hsa-miR-516a-3p. These results provide new insights into the dynamic role of miRNA expression in DPSCs. In conclusion, using miRNA signatures in human as a prediction tool will enable us to elucidate the biological processes occurring in DPSCs.


Subject(s)
Dental Pulp/cytology , Gene Expression Regulation/genetics , Mesenchymal Stem Cells/metabolism , MicroRNAs/biosynthesis , Proto-Oncogene Proteins/biosynthesis , Wnt Proteins/biosynthesis , Bone Marrow Cells/cytology , Cell Differentiation/genetics , Cell Proliferation/genetics , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Wnt-5a Protein
9.
ScientificWorldJournal ; 2014: 186508, 2014.
Article in English | MEDLINE | ID: mdl-25548778

ABSTRACT

Human exfoliated deciduous teeth (SHED) and adipose stem cells (ASC) were suggested as alternative cell choice for cardiac regeneration. However, the true functionability of these cells toward cardiac regeneration is yet to be discovered. Hence, this study was carried out to investigate the innate biological properties of these cell sources toward cardiac regeneration. Both cells exhibited indistinguishable MSCs characteristics. Human stem cell transcription factor arrays were used to screen expression levels in SHED and ASC. Upregulated expression of transcription factor (TF) genes was detected in both sources. An almost equal percentage of >2-fold changes were observed. These TF genes fall under several cardiovascular categories with higher expressions which were observed in growth and development of blood vessel, angiogenesis, and vasculogenesis categories. Further induction into cardiomyocyte revealed ASC to express more significantly cardiomyocyte specific markers compared to SHED during the differentiation course evidenced by morphology and gene expression profile. Despite this, spontaneous cellular beating was not detected in both cell lines. Taken together, our data suggest that despite being defined as MSCs, both ASC and SHED behave differently when they were cultured in a same cardiomyocytes culture condition. Hence, vigorous characterization is needed before introducing any cell for treating targeted diseases.


Subject(s)
Adipose Tissue/cytology , Cardiovascular System/growth & development , Cardiovascular System/metabolism , Cell Separation/methods , Dental Pulp/cytology , Genes, Developmental , Mesenchymal Stem Cells/metabolism , Tooth, Deciduous/cytology , Adult , Biomarkers/metabolism , Cardiovascular System/cytology , Cell Differentiation , Cell Shape , Child , Child, Preschool , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Humans , Immunohistochemistry , Mesenchymal Stem Cells/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Clin Oral Investig ; 18(9): 2103-12, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24549764

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the immunodulatory properties of dental pulp stem cells derived from healthy (SCD) and inflamed pulp deciduous (SCDIP) tissues. The overall hypothesis is that SCDIP possess equal immune properties with SCD and could be used as an alternative tissue source in regenerative medicine. MATERIALS AND METHODS: An intra-oral examination was carried out to assess the status of the pulp tissues and group them according to healthy or inflamed. Primary cells were established from these groups, and basic mesenchymal stem cells (MSC) characterizations were conducted. The expression of human leukocyte antigen (HLA), namely HLA-G, HLA-DR, and HLA-ABC were examined in both cell lines using flow cytometry. We further compared the immunosuppressive effects of SCD and SCDIP on phytohemagglutinin-induced T cell proliferation. Supernatants were tested for cytokine profiling using multiplex array. RESULTS: While SCD exhibited typical MSC characteristics, SCDIP on the other hand, did not. Compared with SCDIP, SCD effectively suppresses mitogen-induced T cells proliferation in a dose-dependent manner, as well as express a higher percentage of HLA-ABC and HLA-G. In addition, levels of several cytokines, such as TNF-α, TNF-ß, and IL-2, were drastically suppressed in SCD than SCDIP. Furthermore, a high level of IL-10, an important anti-inflammatory cytokine, was present in SCD compared with SCDIP. CONCLUSIONS: These findings suggest that SCDIP is highly dysfunctional in terms of their stemness and immunomodulatory properties. CLINICAL RELEVANCE: SCDIP is not a viable therapeutic cell source especially when used in graft versus host disease (GvHD) and organ rejection.


Subject(s)
Dental Pulp/cytology , Immunomodulation/physiology , Mesenchymal Stem Cells/immunology , Cells, Cultured , Child , Child, Preschool , Cytokines/immunology , Flow Cytometry , HLA Antigens/immunology , Humans , Polymerase Chain Reaction , Tooth, Deciduous
11.
Sensors (Basel) ; 13(10): 13276-88, 2013 Sep 30.
Article in English | MEDLINE | ID: mdl-24084118

ABSTRACT

An efficient and low cost optical method for directly measuring the concentration of homogenous biological solutes is proposed and demonstrated. The proposed system operates by Fresnel reflection, with a flat-cleaved single-mode fiber serving as the sensor probe. A laser provides a 12.9 dBm sensor signal at 1,550 nm, while a computer-controlled optical power meter measures the power of the signal returned by the probe. Three different mesenchymal stem cell (MSC) lines were obtained, sub-cultured and trypsinized daily over 9 days. Counts were measured using a haemocytometer and the conditioned media (CM) was collected daily and stored at -80 °C. MSCs release excretory biomolecules proportional to their growth rate into the CM, which changes the refractive index of the latter. The sensor is capable of detecting changes in the number of stem cells via correlation to the change in the refractive index of the CM, with the measured power loss decreasing approximately 0.4 dB in the CM sample per average 1,000 cells in the MSC subculture. The proposed system is highly cost-effective, simple to deploy, operate, and maintain, is non-destructive, and allows reliable real-time measurement of various stem cell proliferation parameters.


Subject(s)
Biopolymers/analysis , Biopolymers/biosynthesis , Culture Media/analysis , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Photometry/instrumentation , Refractometry/instrumentation , Biosensing Techniques/instrumentation , Cell Proliferation , Cells, Cultured , Culture Media/chemistry , Equipment Design , Equipment Failure Analysis , Flow Cytometry/instrumentation , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...