Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eng Life Sci ; 20(8): 357-367, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32774208

ABSTRACT

Unusual composition of an exopolymer (EP) from an obligate halophilic bacterium Chromohalobacter canadensis 28 has triggered an interest in development of an effective bioreactor process for its production. Its synthesis was investigated in 2-L bioreactor at agitation speeds at interval 600-1000 rpm, at a constant air flow rate of 0.5 vvm; aeration rates of 0.5, 1.0, and 1.5 vvm were tested at constant agitation rate of 900 rpm. EP production was affected by both, agitation and aeration. As a result twofold increase of EP yield was observed and additionally increased up to 3.08 mg/mL in a presence of surfactants. For effective scale-up of bioreactors mass transfer parameters were estimated and lowest values of KLa obtained for the highest productivity fermentation was established. Emulsification activity of EP exceeded that of trade hydrocolloids xanthan, guar gum, and cellulose. A good synergism between EP and commercial cellulose proved its potential exploration as an enhancer of emulsifying properties of trade emulsions. A pronounced lipophilic effect of EP was established toward olive oil and liquid paraffin. Cultivation of human keratinocyte cells (HaCaT) with crude EP and purified γ-polyglutamic acid (PGA) showed higher viability than control group.

2.
Appl Microbiol Biotechnol ; 102(11): 4937-4949, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29616312

ABSTRACT

Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.


Subject(s)
Chromohalobacter/metabolism , Polymers/metabolism , Biotechnology , Culture Media , Extracellular Space/chemistry , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Polysaccharides, Bacterial/analysis , Polysaccharides, Bacterial/chemistry
3.
Appl Biochem Biotechnol ; 171(1): 31-43, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23813407

ABSTRACT

Synthesis of innovative exocellular polysaccharides (EPSs) was reported for few thermophilic microorganisms as one of the mechanisms for surviving at high temperature. Thermophilic aerobic spore-forming bacteria able to produce exopolysaccharides were isolated from hydrothermal springs in Bulgaria. They were referred to four species, such as Aeribacillus pallidus, Geobacillus toebii, Brevibacillus thermoruber, and Anoxybacillus kestanbolensis. The highest production was established for the strain 418, whose phylogenetic and phenotypic properties referred it to the species A. pallidus. Maltose and NH4Cl were observed to be correspondingly the best carbon and nitrogen sources and production yield was increased more than twofold in the process of culture condition optimization. After purification of the polymer fraction, a presence of two different EPSs, electroneutral EPS 1 and negatively charged EPS 2, in a relative weight ratio 3:2.2 was established. They were heteropolysaccharides consisting of unusual high variety of sugars (six for EPS 1 and seven for EPS 2). Six of the sugars were common for both EPSs. The main sugar in EPS 1 was mannose (69.3 %); smaller quantities of glucose (11.2 %), galactosamine (6.3 %), glucosamine (5.4 %), galactose (4.7 %), and ribose (2.9 %) were also identified. The main sugar in EPS 2 was also mannose (33.9 %), followed by galactose (17.9 %), glucose (15.5 %), galactosamine (11.7 %), glucosamine (8.1 %), ribose (5.3 %), and arabinose (4.9 %). Both polymers showed high molecular weight and high thermostability.


Subject(s)
Bacillaceae/metabolism , Polysaccharides, Bacterial/biosynthesis , Temperature , Bacillaceae/isolation & purification , Polysaccharides, Bacterial/isolation & purification
4.
Appl Microbiol Biotechnol ; 97(12): 5303-13, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23584243

ABSTRACT

Production of biomass and extracellular polysaccharide (EPS) from psychrophilic Sporobolomyces salmonicolor AL1 in a stirred bioreactor was studied. The aspects of production technical-scale parameters, namely, bioreactor flow field, biomass and EPS production rates, oxygen mass transfer per input power, as well as important product properties, such as rheology and stability of EPS mixtures, were considered. The bioprocess was found to proceed in non-Newtonian flow with consistency coefficient rising typically to 0.03 Pa.s(n) and flow index declining to 0.7. Flow modeling was carried out and showed good homogenization for substrate delivery at agitation rates exceeding 400 rpm. Agitation rates lower than 400 rpm were considered counterproductive due to flow field non-uniformity. The cell density reached 5 g/l and EPS production yield reached 5.5 g/l at production rate 0.057 g EPS/l per hour (0.01 g EPS/g biomass per hour). Oxygen uptake rate and oxygen transfer rate were in the range of 0.5-1.7 mmolO2/l per hour and 2-4.7 mmolO2/l per hour, respectively. The mass transfer coefficient at reaction conditions was found to be in the range [Formula: see text]. The bioprocess biological performance was higher at moderate agitation speed and revealed biomass diminution and cell inactivation by increasing impeller revolutions and shear rate. The product EPS was found to introduce shear-thinning behavior in water solutions with apparent viscosity of up to 30 mPa.s and to stabilize 1-2 % oil-in-water emulsions improving their lipophilic properties. The emulsion dispersion index was found to be comparable with the one of Arlacel 165, the emulsifier used in cosmetic. The long-term performance of the complex cream mixtures of the glucomannan prepared in commercial format was found promising for further application.


Subject(s)
Basidiomycota/growth & development , Basidiomycota/metabolism , Polysaccharides/metabolism , Antarctic Regions , Basidiomycota/isolation & purification , Biomass , Bioreactors/microbiology , Microbiological Techniques , Oxygen/metabolism
5.
Appl Biochem Biotechnol ; 169(1): 301-11, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23179285

ABSTRACT

The Sporobolomyces salmonicolor AL(1) Antarctic strain was cultivated and two bioproducts were obtained: exopolysaccharide and biomass. The biologically active substances ergosterol, torularhodin, torulene, ß-carotene and CoQ(10) were extracted from the biomass and were quantified as follows: ergosterol 5.2 ± 0.2 mg/g, torularhodin 458.3 ± 24.5 µg/g, torulene 273.7 ± 14.5 µg/g, ß-carotene 129.2 ± 7.3 µg/g and coenzyme Q(10) (CoQ(10)) 236.1 ± 12.1 µg/g. Their antioxidant activity was estimated according to the cathode voltammetry method. The most pronounced antioxidant activity (according to trolox) was exhibited by ß-carotene 3.78, followed by CoQ(10) 3.60, both of them being the main contributors to the total extract activity of 3.19. The biologically active metabolites in combination with exoglucomannan as emulsifier were used for the creation of model emulsion systems characterised by great stability. The absorption of UVA rays by the model emulsions was studied.


Subject(s)
Antioxidants/metabolism , Basidiomycota/metabolism , Emulsifying Agents/metabolism , Antarctic Regions , Antioxidants/analysis , Basidiomycota/chemistry , Basidiomycota/isolation & purification , Carotenoids/analysis , Carotenoids/metabolism , Emulsifying Agents/analysis , Soil Microbiology , Ubiquinone/analogs & derivatives , Ubiquinone/analysis , Ubiquinone/metabolism , beta Carotene/analysis , beta Carotene/metabolism
6.
Appl Biochem Biotechnol ; 163(8): 1038-52, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20972644

ABSTRACT

An exopolysaccharide-producing Antarctic yeast strain was selected and identified as Cryptococcus laurentii AL100. The physiological properties of the strain and its ability to utilize and biotransform different carbon sources (pentoses, hexoses, and oligosaccharides) into exopolysaccharide and biomass were investigated. Sucrose was chosen as a suitable and accessible carbon source. The biosynthetic capacity of the strain was studied in its dynamics at different sucrose concentrations (20, 30, 40, and 50 g/L) and temperatures (22 and 24 °C). The maximum biopolymer quantity of 6.4 g/L was obtained at 40 g/L of sucrose, 22 °C temperature and 96-h fermentation duration. The newly synthesized microbial carbohydrate was a heteropolysaccharide having the following monosaccharide composition: arabinose, 61.1%; mannose, 15.0%; glucose, 12.0%; galactose, 5.9%; and rhamnose, 2.8%. It was characterized by polydispersity of the polymer molecule, 60% of it having molecular mass of 4200 Da. The exopolysaccharide demonstrated good emulsifying and stabilizing properties with regard to oil/water emulsions and a pronounced synergistic effect with other hydrocolloids such as xanthan gum, guar gum, and alginate.


Subject(s)
Cryptococcus/metabolism , Extracellular Space/metabolism , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Carbohydrate Sequence , Cryptococcus/chemistry , Extracellular Space/chemistry , Molecular Sequence Data , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...